РЕФЕРАТЫ ПО ТЕХНОЛОГИИ

Диплом: Расчет тепловой схемы ПТУ К-500-65 (3000 (Часть пояснительной к диплому)


смотреть на рефераты похожие на "Расчет тепловой схемы ПТУ К-500-65 (3000 (Часть пояснительной к диплому) "
Расчет тепловой схемы ПТУ К-500-65/3000.
Постановка задачи.
Расчет тепловой схемы АЭС сводится к расчету стандартной турбоустановки.
Расчет приведен для турбоустановки К-500-65/3000, паровой турбины с мощностью 500 МВт для одноконтурной АЭС с реактором РБМК-1000.
Конечной целью расчета является определение электрической мощности и КПД турбоустановки при заданном расходе пара на турбину и заданной мощности теплофикационной установки.
Описание расчетной тепловой схемы.
Особенности тепловой схемы одноконтурной АЭС связаны с радиоактивностью паров. В любой схеме таких АЭС обязательно: во-первых, включение в тепловую схему испарителя для получения нерадиактивного пара, подаваемого на уплотнения турбины; во-вторых, использование промежуточного водяного контура между греющим паром и водой теплосети. Выполнение этих решений обязательно. Оба этих условий были реализованы в рассчитываемой тепловой схеме.
Производится расчет паротурбинной установки, в которой образование пара происходит в корпусе реактора блока АЭС с РБМК-1000. В барабан-сепараторе происходит разделение острого пара и воды. Острый пар подается на ЦВД турбины и двухступенчатый пароперегреватель (ПП2).
Турбина К-500-65/3000 состоит из одного двухпоточного ЦВД и четырех двухпоточных ЦНД. Отборы из ЦВД и ЦНД идут на регенеративные подогреватели, а также на подогреватели сетевой воды, деаэратор и испаритель. Для уменьшения поступления продуктов коррозии в реакторную воду, ПВД не устанавливаются. Охладители дренажей установлены после каждого ПНД (в данной схеме пять ПНД). Используем каскадного слива дренажей ПНД, которые сливаются в конденсатор. Конденсатный насос установлен по двухподъемной схеме: КН1 – после конденсатора, а КН2 – перед ПНД1.
Подогрев основного конденсата, проходящего последовательно через все ПНД, происходит в следующей последовательности: ПНД1 – 7 отбор, ПНД2 – 6 отбор,
ПНДЗ – 5 отбор, ПНД4 – 4 отбор, ПНД5 – 3 отбор. Также происходит подогрев сетевой воды: Б1 – 5 отбор, Б2 – 4 отбор, БЗ – 3 отбор, Б4 – 2 отбор. За счет 2 отбора происходит деаэрация, а также парообразование нерадиактивного пара в испарителе.
Между ЦВД и ЦНД установлен сепаратор и двухступенчатый пароперегреватель.
Дренаж после сепаратора сбрасывается в ПНДЗ, после ПП1 и ПП2 в деаэратор.
От естественных примесей воды реактор одноконтурной АЭС надежно защищает
100 % - ная конденсатоочистка. БОУ установлен перед КН2, после КН1 установлены основной эжектор и эжектор уплотнений.
Расчетная схема ПТУ и h, s – диаграмма процесса в турбине.
Расчетная схема составлена на основе принципиальной схемы, разработанной заводом-изготовителем (ХТГЗ). Исходные данные по параметрам отборов турбины
К-500-65/3000 были взяты из [1] и сведены в табл 0.4.-1. Некоторые числовые данные были взяты из [4], проекта турбоустановки К-750-65/3000 (близкой по своим характеристикам к рассчитываемой). В табл. 0.4.-1 представлены данные о параметрах пара в отборах турбины. По таблице построена h, s – диаграмма процесса расширения пара в турбине (рис.2). В табл. 0.4.-2 представлены основные исходные данные.
Таблица 0.4.-1: Параметры пара в отборах турбины К-500-65/3000.
Отбор Давление Ст. сухости Энтальпия Температура
i pi, МПа X hi, кДж/кг Тi,°С
0 6.59 0.995 2770 281.8
1 2.055 0.900 2608 213.8
2 1.155 0.880 2544 186.3
3 0.632 0-.860 2468 160.9
4 0.348 0.849 2390 138.7
5 0.142 - 2852 189.3
6 0.066 - 2724 122
7 0.026 0.990 2596 65.9
Давление в конденсаторе: рк=0.004 МПа (hк=2416 кДж/кг).
Таблица 0.4.-2: Основные исходные данные.
Характеристика Численное Размерность
значение
- расход пара на турбоустановку 793.1 кг/с
- давление пара перед турбоустановкой 6.59 МПа
- степень сухости пара перед 0.995 -
турбоустановкой
- температура промперегрева 265.4 оС
- давление в деаэраторе 0.69 МПа
- давление в конденсаторе 0.04 МПа
- тепловая мощность, отдаваемая в 22.2 МВт
теплосеть
Рис. 1: Тепловая схема ПТУ К-500-65/3000.
Рис. 2: Процесс расширения пара в турбине.
Таблица параметров и расходов рабочего тела.
При заполнении таблицы используем материал изложенный в [2]. Значения параметров рабочего тела, необходимые для расчета уравнений теплового баланса элементов схемы и заданные расходы, так же как и основные результаты расчета, удобно сводить в таблицу. Данные в строках 1, 2, 3 – номера отборов, давления и энтальпии в них вносятся из табл. 0.4.-1.
Давления в подогревателях (строка 4) рассчитываются по давлению в отборах с учетом гидравлических потерь по формуле:
- необходимое давление в точке турбины, из которой отбирается пар на подогреватель r:

- относительная величина потери давления в паропроводе от турбины до подогревателя:
r – номер подогревателя по ходу воды, включая деаэратор.
В стоку 5 внесены температуры насыщения при этих давлениях. Строка 6 заполняется при наличии у подогревателя охладителя дренажа (указывается выбранный недогрев в нем). Температура дренажа (строка 7) при отсутствии охладителя дренажа равна температуре насыщения в подогревателе (строка 5), в противном случае температура дренажа рассчитывается по формуле:

- температура среды на выходе из предыдущего подогревателя
(строка 11);
- значение min температурного напора в охладителе дренажа (строка
6).
Энтальпии дренажей подогревателей (строка 8) определяются по [4] на линии насыщения при давлении в соответствующем подогревателе. Давление воды за подогревателями (строка 9) находят по напору питательного и конденсатного насосов с учетом гидравлических потерь по водяной стороне подогревателя.
Температура обогреваемой среды после подогревателя (строка 11) определяется по формуле:

- температура насыщения в подогревателе (строка 5);
- принятое значение минимального температурного напора (строка
10).
Энтальпия нагреваемой воды (строка 12) определяется по соответствующим давлениям и температурам (строки 9 и 11). В строку 6 и 10 вносятся выбранные значения с учетом используемых в схеме подогревателей. В строку 13 вносятся рассчитанные значения расходов пара через элементы схемы.

Таблица 0.4.-3: Параметры рабочего тела в элементах расчетной схемы.
- расход пара после ЦВД 615.36 кг/с
- расход пара через С 96.59 кг/с
- расход греющего пара через ПП1 36.58 кг/с
- расход греющего пара через ПП2 42.57 кг/с
- расход конденсата после ПНД5 717.47 кг/с
- расход греющего пара от 2-го отбора 6.19 кг/с
- расход греющего пара через ПНД5 36.53 кг/с
- расход греющего пара через ПНД4 44.63 кг/с
- расход греющего пара через ПНД3 16.14 кг/с
- расход греющего пара через ПНД2 19.27 кг/с
- расход греющего пара через ПНД1 25.89 кг/с
- энтальпия питательной воды 698.93 кДж/кг
Баланс всех полученных расходов проверяем на основе уравнения материального баланса конденсатора. Расход рабочего тела после конденсатора запишем в следующем виде:
кг/с
кг/с;
кг/с – конденсат после ХВО, сбрасываемый в конденсатор;
кг/с – дренаж после ЭУ;
кг/с – дренаж после ОЭ;
кг/с – протечки уплотняющей воды через ПН;
кг/с – протечки уплотняющей воды через ГЦН;
кг/с – расход пара за ЦНД;
кг/с – расход пара уплотнения ЦНД;
кг/с – протечки пара через уплотнения ЦНД.
Зная , определим расход основного конденсата через ПНД:
кг/с
кг/с – расход связанный с подсосом уплотняющей воды ПН;
кг/с – расход связанный с подсосом уплотняющей воды ГЦН.
Данный результат совпадает с величиной, полученной в ходе решения системы уравнений кг/с.
Температура питательной воды oC определяем по энтальпии питательной воды кДж/кг и по давлению за деаэратором, которое складывается из
МПа.
Внутренняя мощность турбины [4].
Внутреннюю мощность турбины определяют как сумму мощностей отсеков турбины
(количество отсеков турбины К-500-65/3000 равно 8) табл. 0.9.-1.
Таблица 0.9.-1: Внутренняя мощность турбины.
Расход пара через отсек турбины Di, Теплоперепад Hi, кДж/кгDi(Hi,
кг/с кВт
121391
45616
53025
51373
62123
63476
61010
81441
кВт
Расчет мощности на клеммах генератора:
кВт
кВт – расход мощности на вращение самого турбогенератора;
– к.п.д. генератора (принимаем).
Гарантированная эл. мощность (по методике завода-изготовителя):
кВт
Расход электроэнергии на привод насосов конденсатно-питательного тракта.
К.п.д. электроприводов всех насосов принимаем следующим .
Расход электроэнергии на привод конденсатного насоса 1-го подъема:
кВт
Расход электроэнергии на привод конденсатного насоса 2-го подъема:
кВт
Расход электроэнергии на привод питательного насоса:
кВт
Суммарный расход электроэнергии на собственные нужды турбоустановки:
кВт
Показатели тепловой экономичности.
Расход теплоты на производство электроэнергии турбоустановки:
кВт
Суммарный расход теплоты на внешнее потребление:
кВт
кВт – количество теплоты, отдаваемое в теплосеть;
кВт – расход теплоты на подогрев доб. воды;
кг/с – расход добавочной воды;
кДж/кг – энтальпия добавочной воды (tнач(28 0С).
Удельный расход теплоты брутто по турбоустановке:

Электрический к.п.д. брутто турбоустановки:

Электрический к.п.д. нетто турбоустановки:

Заключение.
В ходе проведенного расчета были определены: электрическая мощность и КПД турбоустановки при заданном расходе пара на турбину и заданной мощности теплофикационной установки.
--
X, h4
DС, hСдр
X-DС, hС0
DПП1, h1
X-DС, hС0
hПП1др
hПП10
DПП2, h0
X-DС, hПП0
hПП1др
hПП20
DД6, h2
DДк, hДк
DОЭ, hОЭ
DП5к, hП5к
DПП1, hПП1др
DПП2, hПП2др
DИ, hИдр
DП5, h3
DП5к, hП5к
DП5+DИ, hП5др
hП4к
DП5+DИ, hП5др
DП4, h4
DП5к, hП4к
DП5+DИ+DП4, hП4др
hП3к
DП5+DИ+ DП4, hП4др
DП3, h5
DП5к, hП3к
DП5+DИ+DП4+DП3+DC, hП3др
hП2к
DБ1+DБ2+ DБ3+ DБ4, hБ1др
DП5+DИ+ DП4+ DП3+ DС, hП3др
DП2, h6
DП5к, hП2к
DП5+DИ+DП4+DП3+DC+ DП2, hП2др
hП1к
DП5+DИ+ DП4+DП3+DC+DП2+( DБi, hП2др
DП1, h7
DП5к, hП1к
DП5+DИ+DП4+DП3+DC+DП2+ DП1+( DБi, hП1др
hвх П1к




Все рефераты по технологии

Hosted by uCoz