РЕФЕРАТЫ ПО РАДИОЭЛЕКТРОНИКЕ

Реферат: AVR микроконтроллер AT90S2333 фирмы Atmel


Микроконтроллеры AT90S2333 и AT90S4433 фирмы Atmel
AT90S2333 и AT90S4433 - экономичные 8-битовые КМОП микроконтроллеры, построенные с использованием расширенной RISC архитектуры AVR. Исполняя по одной команде за период тактовой частоты, AT90S2333 и AT90S4433 имеют производительность около 1MIPS на МГц, что позволяет разработчикам создавать системы оптимальные по скорости и потребляемой мощности. В основе ядра AVR лежит расширенная RISC архитектура, объединяющая развитый набор команд и 32 регистра общего назначения. Все 32 регистра непосредственно подключены к арифметико-логическому устройству (АЛУ), что дает доступ к любым двум регистрам за один машинный цикл. Подобная архитектура обеспечивает десятикратный выигрыш в эффективности кода по сравнению с традиционными CISC микроконтроллерами. AT90S2333/4433 предлагают следующие возможности: 2кБ/4кБ загружаемой флэш памяти; 128/256 байт EEPROM; 128 байт статического ОЗУ, 20 линий ввода/вывода общего назначения; 32 рабочих регистра; настраиваемые таймеры/счетчики с режимом совпадения; внешние и внутренние прерывания; программируемый универсальный последовательный порт;
6-канальный 10-разрядный АЦП; программируемый сторожевой таймер со встроенным генератором; SPI последовательный порт для загрузки программ; два выбираемых программно режима низкого энергопотребления. Холостой режим
(Idle Mode) отключает ЦПУ, оставляя в рабочем состоянии регистры, таймеры/счетчики, SPI порт и систему прерываний. Экономичный режим (Power
Down Mode) сохраняет содержимое регистров, но отключает генератор, запрещая функционирование всех встроенных устройств до внешнего прерывания или аппаратного сброса. Микросхемы производятся с использованием технологии энергонезависимой памяти высокой плотности фирмы Atmel. Загружаемая флэш память на кристалле может быть перепрограммирована прямо в системе через последовательный интерфейс SPI или доступным программатором энергонезависимой памяти. Объединяя на одном кристалле усовершенствованный
8-битовый RISC процессор с загружаемой флэш памятью, AT90S2333/4433 являются мощными микроконтроллерами, которые позволяют создавать достаточно гибкие и эффективные по стоимости устройства. AT90S2333/4433 поддерживаются полной системой разработки включающей в себя компиляторы Си, макроассемблеры, программные отладчики/симуляторы, внутрисхемные эмуляторы и отладочные комплекты.
назначениномер номер
е вывода вывода вывода
PDIP
RESET 29 1
PD0/RXD 30 2
PD1/TXD 31 3
PD2/INT0 32 4
PD3/INT1 1 5
PD4/T0 2 6
VCC 4 7
GND 5 8
XTAL1 7 9
XTAL2 8 10
PD5/T1 9 11
PD6/AIN0 10 12
PD7/AIN1 11 13
PB0/ICP 12 14
PB1/OC1 13 15
PB2/SS 14 16
PB3/MOSI 15 17
PB4/MISO 16 18
PB5/SCK 17 19
AVCC 18 20
AREF 20 21
AGND 21 22
PC0/ADC0 23 23
PC1/ADC1 24 24
PC2/ADC2 25 25
PC3/ADC3 26 26
PC4/ADC4 27 27
PC5/ADC5 28 28
ОПИСАНИЕ ВЫВОДОВ
GND - земля
Port B (PB5..PB0) - Порт B является 6-битовым двунаправленным портом ввода/вывода с внутренними подтягивающими резисторами. Выходные буферы порта B могут поглощать ток до 20мА. Если выводы PB0..PB5 используются как входы и извне устанавливаются в низкое состояние, они являются источниками тока, если включены внутренние подтягивающие резисторы. Кроме того Порт B обслуживает некоторые специальные функции, которые будут описаны ниже.
Port С (PС5..PС0) - Порт С является 6-битовым двунаправленным портом ввода/вывода с внутренними подтягивающими резисторами. Выходные буферы порта С могут поглощать ток до 20мА. Если выводы PС0..PС5 используются как входы и извне устанавливаются в низкое состояние, они являются источниками тока, если включены внутренние подтягивающие резисторы. Кроме того Порт С обслуживает аналоговые входы АЦП.
Port D (PD5..PD0) - Порт D является 8-битовым двунаправленным портом ввода/вывода с внутренними подтягивающими резисторами. Выходные буферы порта B могут поглощать ток до 20мА. Если выводы PD0..PD7 используются как входы и извне устанавливаются в низкое состояние, они являются источниками тока, если включены внутренние подтягивающие резисторы. Кроме того Порт D обслуживает некоторые специальные функции, которые будут описаны ниже.
RESET - Вход сброса. Удержание на входе низкого уровня в течение двух машинных циклов (если работает тактовый генератор), сбрасывает ус- тройство.
XTAL1 - Вход инвертирующего усилителя генератора и вход внешнего тактового сигнала.
XTAL2 - Выход инвертирующего усилителя генератора.
AVCC - Вывод источника питания АЦП. Этот вывод через фильтр низкой частоты должен быть подключен к выводу питания процессора.
AREF - Вход опорного напряжения АЦП. Напряжение, подаваемое на этот вывод лежит в пределах 2.7В...AVCC.
AGND - Если плата имеет отдельный слой аналоговой земли, к нему подключается этот вывод. В противном случае этот вывод соединяется с GND.
КВАРЦЕВЫЙ ГЕНЕРАТОР
XTAL1 и XTAL2 являются входом и выходом инвертирующего усилителя, на котором можно собрать генератор тактовых импульсов. Можно использовать как кварцевые, так и керамические резонаторы. Если сигнал генератора необходимо использовать для управления внешними устройствами, сигнал с вывода XTAL2 снимается через одиночный буфер серии HC, при этом емкость конденсатора с вывода на землю уменьшается на 5pF. При подаче внешнего тактового сигнала вывод XTAL2 остается неподключенным, а XTAL1 подключается в выходу внешнего генератора.
Обзор архитектуры процессоров.
Регистровый файл быстрого доступа содержит 32 8-разрядных регистра общего назначения, доступ к которым осуществляется за один машинный цикл.
Поэтому за один машинный цикл исполняется одна операция АЛУ. Два операнда выбираются из регистрового файла, выполняется операция, результат ее записывается в регистровый файл - все за один машинный цикл.
Шесть из 32 регистров можно использовать как три 16-разрядных указателя в адресном пространстве данных, что дает возможность использовать высокоэффективную адресную арифметику (16-разрядные регистры X, Y и Z).
Один из трех адресных указателей (регистр Z) можно использовать для адресации таблиц в памяти программ.
АЛУ поддерживает арифметические и логические операции c регистрами, с константами и регистрами. Операции над отдельными регистрами также выполняются в АЛУ.
Кроме регистровых операций, для работы с регистровым файлом могут использоваться доступные режимы адресации, поскольку регистровый файл занимает адреса 00h-1Fh в области данных, обращаться к ним можно как к ячейкам памяти.
Пространство ввода/вывода состоит из 64 адресов для периферийных функций процессора, таких как управляющие регистры , таймеры/счетчики и другие. Доступ к пространству ввода/вывода может осуществляться непосредственно, как к ячейкам памяти расположенным после регистрового файла (20h- 5Fh).
Процессоры AVR построены по гарвардской архитектуре с раздельными областями памяти программ и данных. Доступ к памяти программ осуществляется при помощи одноуровнего буфера. Во время выполнения команды, следующая выбирается из памяти программ. Подобная концепция дает возможность выполнять по одной команде за каждый машинный цикл. Память программ - это внутрисистемная загружаемая флэш-память.
При помощи команд относительных переходов и вызова подпрограмм осуществляется доступ ко всему адресному пространству. Большая часть команд
AVR имеет размер 16-разрядов, одно слово. Каждый адрес в памяти программ содержит одну 16- или 32-разрядную команду.
При обработке прерываний и вызове подпрограмм адрес возврата запоминается в стеке. Стек размещается в памяти данных общего назначения, соответственно размер стека ограничен только размером доступной памяти данных и ее использованием в программе. Все программы пользователя должны инициализировать указатель стека (SP) в программе выполняемой после сброса
(до того как вызываются подпрограммы и разрешаются прерывания). 8-разрядный указатель стека доступен для чтения/записи в области ввода/вывода.
Доступ к статическому ОЗУ, регистровому файлу и регистрам ввода/вывода осуществляется при помощи пяти доступных режимов адресации поддерживаемых архитектурой AVR.
Все пространство памяти AVR является линейным и непрерывным. Гибкий модуль прерываний имеет собственный управляющий регистр в пространстве ввода/вывода, и флаг глобального разрешения прерываний в регистре состояния. Каждому прерыванию назначен свой вектор в начальной области памяти программ. Различные прерывания имеют приоритет в соответствии с расположением их векторов. По младшим адресам расположены векторы с большим приоритетом.
Файл регистров общего назначения

Все команды оперирующие регистрами прямо адресуются к любому из регистров за один машинный цикл. Единственное исключение - пять команд оперирующих с константами SBCI, SUBI, CPI, ANDI, ORI и команда LDI, загружающая регистр константой. Эти команды работают только со второй половиной регистрового файла - R16..R31. Команды SBC, SUB, CP, AND и OR, также как и все остальные, применимы ко всему регистровому файлу.
Каждому регистру присвоен адрес в пространстве данных, они отображаются на первые 32 ячейки ОЗУ. Хотя регистровый файл физически размещен вне ОЗУ, подобная организация памяти дает гибкий доступ к регистрам. Регистры X, Y и
Z могут использоваться для индексации любого регистра. Кроме обычных функций, регистры R26..R31 имеют дополнительные функции, эти регистры можно использовать как адресные указатели в области памяти данных. Эти регистры обозначаются как X,Y,Z и определены следующим образом:
15
Регистр 0
X
7 7
0 0
1Bh (R27) 1Ah (R26)
15
Регистр 0
Y
7 7
0 0
1Dh (R29) 1Ch (R28)
15
Регистр 0
Z
7 7
0 0
1Fh (R31) 1Eh (R30)
При различных режимах адресации эти регистры могут использоваться как фиксированный адрес, для адресации с автоинкрементом или с автодекрементом.
Арифметико-логическое устройство - АЛУ
АЛУ процессора непосредственно подключено к 32 регистрам общего назначения. За один машинный цикл АЛУ производит операции между регистрами регистрового файла. Команды АЛУ разделены на три основных категории - арифметические, логические и битовые.
Загружаемая память программ.
AT90S2333/4433 содержат 2/4 кБ загружаемой флэш памяти для хранения программ. Поскольку все команды занимают одно 16- или 32-разрядное слово, флэш память организована как 1/2 Kx16. Флэш-память выдерживает не менее
1000 циклов перезаписи. Программный счетчик имеет ширину 10/11 бит и позволяет адресоваться к 1024/2048 словам программной флэш-памяти.
Подробно загрузка флэш памяти будет рассмотрена дальше.
EEPROM память данных
AT90S2333/4433 содержат 128/256 байт электрически стираемой энергонезависимой памяти (EEPROM). EEPROM организована как отдельная область данных, каждый байт которой может быть прочитан и перезаписан.
EEPROM выдерживает не менее 100000 циклов записи/стирания. Доступ к энергонезависимой памяти данных рассмотрен ниже и задается регистрами адреса, данных и управления. Дальше будет рассмотрена загрузка данных в
EEPROM через SPI интерфейс.
Статическое ОЗУ данных
На рисунке приведенном ниже показана организация памяти данных в
AT90S2333/4433.
224 ячейки памяти включают в себя регистровый файл, память ввода/вывода и статическое ОЗУ данных.
Первые 96 адресов используются для регистрового файла и памяти ввода/вывода, следующие 128 - для ОЗУ данных.
При обращении к памяти используются пять различных режимов адресации: прямой, непосредственный со смещением, непосредственный, непосредственный с предварительным декрементом и непосредственный с постинкрементом. Регисты
R26..R31 регистрового файла используются как указатели для непосредственной адресации. Прямая адресация имеет доступ ко всей памяти данных.
Непосредственная адресация со смещением используется для доступа к 63 ячейкам базовый адрес которых задается содержимым регистров Y или Z.
Для непосредственной адресации с инкрементом и декрементом адреса используются адресные регистры X, Y и Z.
При помощи любого из этих режимов производится доступ ко всем 32 регистрам общего назначения, 64 регистрам ввода/вывода и 128 ячейкам ОЗУ.
Время выполнения команд.
ЦПУ процессора AVR управляется системной частотой генерируемой внешним резонатором. Внутреннее деление частоты генератора не используется. В процессоре организован буфер (pipeline) команд, при выборе команды из памяти программ происходит выполнение предыдущей команды. Подобная концепция позволяет достичь быстродействия 1MIPS на MHz, уникальных показателей стоимости, быстродействия и потребления процессора.
Регистровый файл Область адресов
данных
R0 00h
R1 01h
: :
R30 1E
R31 1F
Регистры
вводавывывода
00h 20h
01h 21h
: :
3Eh 5Eh
3Fh 5Fh
- Встроенное ОЗУ
- 61h
- :
- DEh
- DFh
Пространство ввода/вывода AT90S2333/4433
Адресарегистназвание функции
ры
3Fh(5FSREG Status REGister Регистр Состояния
h)
3Dh(5DSP Stack pointer low Указатель стека
h)
3Bh(5BGIMSK General Interrupt MaSK Общий регистр маски прерываний
h) register
3Ah(5AGIFR General Interrupt Flag Общий регистр флагов прерываний
h) Register
39h(59TIMSK Timer/counter Interrupt Регистр маски прерываний от
h) mask register таймера/счетчика
38h(58TIFR Timer/counter Interrupt Регистр флага прерывания
h) Flag register таймера/счетчика
35h(55MCUCR MCU general Control общий регистр управления
h) Register микроконтроллером
34h(54MCUSR MCU Status Register рег.состояния микроконтрол.
h)
33h(53TCCR0 Timer/Counter 0 Control Регистр управления таймером
h) Register счетчиком 0
32h(52TCNT0 Timer/Counter 0 (8-бит) Таймер/счетчик 0 (8 бит)
h)
2Fh(4FTCCR1ATimer/Counter 1 Control Рег. A управления таймером
h) Register A счетчиком 1
2Eh(4ETCCR1BTimer/Counter 1 Control Рег. B управления таймером
h) Register B счетчиком 1
2Dh(4DTCNT1HTimer/Counter 1 High byte Таймер/счетчик 1 старший байт
h)
2Ch(4CTCNT1LTimer/Counter 1 Low byte Таймер/счетчик 1 младший байт
h)
2Bh(4BOCR1H Output Compare Register 1 Выход регистра совпаден. 1 старший
h) high byte байт
2Ah(4AOCR1L Output Compare Register 1 Выход регистра совпаден. 1 младший
h) low byte байт
27h(47ICR1H T/C 1 Input Cupture Регистр захвата ТС 1 старший байт
h) Register High Byte
26h(46ICR1L T/C 1 Input Cupture Регистр захвата ТС 1 младший байт
h) Register Low Byte
21h(41WDTCR Watchdog Timer Control Регистр управления сторожевым
h) Register таймером
1Eh(3EEEAR EEPROM Address Register Регистр адреса энергонезависимой
h) памяти
1Dh(3DEEDR EEPROM Data Register Регистр данных энергонезависимой
h) памяти
1Ch(3CEECR EEPROM Control Register Регистр управления
h) энергонезависимой памяти
18h(38PORTB Data Register, Port B Регистр данных порта B
h)
17h(37DDRB Data Direction Register Регистр направления данных порта B
h) Port B
16h(36PINB Input pins, Port B Выводы порта B
h)
15h(35PORTС Data Register, Port С Регистр данных порта С
h)
14h(34DDRС Data Direction Register Регистр направления данных порта С
h) Port С
13h(33PINС Input pins, Port С Выводы порта С
h)
12h(32PORTD Data Register, Port D Регистр данных порта D
h)
11h(31DDRD Data Direction Register Регистр направления данных порта D
h) Port D
10h(30PIND Input pins, Port D Выводы порта D
h)
0Fh(2FSPDR SPI I/O Data Register Регистр данных порта SPI
h)
0Eh(2ESPSR SPI Status Register Регистр состоян. порта SPI
h)
0Dh(2DSPCR SPI Control Register Регистр управл.порта SPI
h)
0Ch(2CUDR UART Data Register Регистр данных последовательного
h) порта
0Bh(2BUSR UART Status Register Регистр состояния последовательного
h) порта
0Ah(2AUCR UART Control Register Регистр управления
h) последовательного порта
09h(29UBRR UART Baud Rate Register Регистр скорости последовательного
h) порта
08h(28ACSR Analog Comparator Control Регистр управления и состояния
h) and Status Register аналогового компарат.
07h(27ADMUX ADC multiplexer Select Регистр коммутатора АЦП
h) register
06h(26ADCSR ADC Control and Status Регистр управления и состояния АЦП
h) Register
05h(25ADCH ADC data register High Рег данных АЦП (старш.)
h)
04h(24ADCL ADC data register Low Рег данных АЦП (младш.)
h)
03h(23UBRRHIUART Baud Rate Register Регистр скорости последовательного
h) HIgh порта (старш.)
Примечание: зарезервированные и неиспользуемые ячейки не показаны
Все устройства ввода/вывода и периферийные устройства процессора располагаются в пространстве ввода/вывода. Различные ячейки этого пространства доступны через команды IN и OUT, пересылающие данные между одним из 32-х регистров общего назначения и пространством ввода/вывода. К регистрам 00h..1Fh можно осуществлять побитовый доступ командами SBI и CBI.
Значение отдельного бита этих регистров можно проверить командами SBIC и
SBIS. Дополнительную информацию по этому вопросу можно найти в описании системы команд.
При использовании специальных команд IN, OUT, SBIS и SBIC, должны использоваться адреса $00..$3F. При доступе к регистру ввода/вывода как к ячейке ОЗУ, к его адресу необходимо добавить $20. В приведенной выше таблице адреса регистров в памяти данных приведены в скобках. Для совместимости с другими устройствами при доступе к зарезервированным битам в них должен записываться ноль, зарезервированные адреса в пространстве ввода/вывода не должны записываться
Регистр состояния – SREG 3Fh(5Fh)
Регистр состояния расположен по адресу 3Fh (5Fh) пространства ввода/вывода и определен следующим образом:

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
Указатель стека указывает на область памяти в которой расположен стек вызова подпрограмм и прерваний. Область стека в ОЗУ должна быть задана до того как произойдет любой вызов подпрограммы или будут разрешены прерывания. Указатель стека уменьшается на 1 при записи данных в стек командой PUSH и уменьшается на 2 при вызове подпрограммы командой CALL или обработке прерывания. Указатель стека увеличивается на 1 при выборе данных из стека командой POP и увеличивается на 2 при выполнении команд возврата из подпрограммы или обработчика прерывания (RET или RETI).
***Стек процессора работает с предварительным инкрементом и постдекрементом
Сброс и обработка прерываний.
В процессоре предусмотрены 13 источников прерываний. Эти прерывания и сброс имеют различные векторы в области памяти программ. Каждому из прерываний присвоен отдельный бит разрешающий данное прерывание при установке бита в 1, если бит I регистра состояния разрешает общее обслуживание прерываний.
Самые младшие адреса памяти программ определены как векторы сброса и прерываний. Полный список векторов прерываний приведен в таблице Этот список определяет и приоритет различных прерываний. Меньшие адреса соответствуют более высокому уровню приоритета. Самый высокий уровень у сброса, следующий приоритет у INT0 - внешнего запроса прерывания 0 и т.д.
Ниже приведена типичная программа обработки сброса и векторов прерываний:
000h rjmp RESET Обработка сброса
001h rjmp EXT_INT0 Обработка IRQ0
002h rjmp EXT_INT1 Обработка IRQ1
003h rjmp TIM1_CAPT Обработка захвата таймера 1
004h rjmp TIM1_COMP Обработка совпадения таймера 1
005h rjmp TIM1_OVF Обработка переполнения таймера 1
006h rjmp TIM0_OVF Обработка переполнения таймера 0
007h rjmp SPI_STC Обработка передачи по SPI
008h rjmp UART_RXC Обработка приема байта
009h rjmp UART_DRE Обработка освобождения UDR
00Ah rjmp UART_TXC Обработка передачи байта
00Bh rjmp ADC Обработка преобразования АЦП
00Ch rjmp EE_RDY Обработка готовности EEPROM
00Dh rjmp ANA_COMP Обработка аналогов. компаратора
00Eh Основная Начало основной программы
программа
Сброс и векторы прерываний.
Номер АдресИсточник Описание прерывания
вектор
а
1 000h RESET Ножка сброса, сторожевой таймер
Brown-Out reset
2 001h INT0 Внешнее прерывание 0
3 002h INT1 Внешнее прерывание 1
4 003h TIMER1 CAPTЗахват таймера/счетчика 1
5 004h TIMER1 COMPСовпаден. таймера/счетчика 1
6 005h TIMER1 OVF Переполнение таймера/счетчика 1
7 006h TIMER0 OVF Переполнение таймера/счетчика 0
8 007h SPI, STC Передача по SPI завершена
9 008h UART RX Последоват.порт прием закончен
10 009h UART UDRE Посл.порт регистр данных пуст
11 00Ah UART TX Посл.порт передача закончена
12 00Bh ADC Преобразование АЦП завершено
13 00Ch RDY EEPROM готово
14 00Dh COMP Аналоговый компаратор
ИСТОЧНИКИ СБРОСА
AT90S2333/4433 имеют четыре источника сброса.
* Сброс по включению питания. Процессор сбрасывается при подаче питания на выводы VCC и GND.
* Внешний сброс. Процессор сбрасывается при подаче низкого уровня на вывод
RESET на время более двух периодов тактовой частоты.
* Сброс от сторожевого таймера. Процессор сбрасывается по окончанию времени отработки сторожевого таймера, если разрешена его работа.
* Brown-Out сброс сброс при падении Vcc ниже некоторого значения.
Во время сброса все регистры ввода/вывода устанавливаются в начальные значения, программа начинает выполняться с адреса $000, по этому адресу должна быть записана команда RJMP - относительный переход на программу обработки сброса. Если в программе не разрешаются прерывания и векторы прерываний не используются, в первых адресах памяти может быть записана программа.
Сброс по включению питания
Импульс сброса по включению питания генерируется внутренней схемой. Уровень срабатывания схемы - 2.2В. Сброс производится когда напряжение питания превысит уровень срабатывания. Схема сброса по включению питания не дает процессору запускаться до тех пор, пока напряжение не достигнет безопасного уровня. При достижении безопасного уровня напряжения включается счетчик задержки определяющий длительность сброса. Эта длительность задается битами- перемычками и может устанавливаться в одно из восьми значений приведенных в таблице 4.
Таблица 3. Хар актеристики сброса.(Vcc=5.0V)
Тип Min Typ Max
напряжения
Vpower Напряжение срабатывания сброса по включению 1.7v 2.2v 2.7v
питания
Vreset Напряжение срабатывания сброса по выводу RESET 0.6Vcc
Vbodlevel Напряжение срабатывания сброса BODLEVEL=1 2.6v 2.7v 2.8v
по Brown-Out
Напряжение срабатывания сброса BODLEVEL=0 3.8v 4.0v 4.2v
по Brown-Out
Таблица 4. Установка времени сброса
CKSEL [2:0] Время запуска
000 4mS + 6CK
001 6CK
010 64mS + 16K CK
011 4mS + 16K CK
100 16K CK
101 64mS + 1K CK
110 4mS + 1K CK
111 1K CK
ВНЕШНИЙ СБРОС
Внешний сброс обрабатывается по низкому уровню на выводе RESET. Вывод должен удерживаться в низком состоянии по крайней мере два периода тактовой частоты. После достижения напряжения Vrst запускается таймер задержки, через промежуток времени Tout процессор запускается.
BROWN-OUT
AT90S2333/4433 имеют встроенную схему отслеживания напряжения питания.
Работа этой схемы разрешается и запрещается битом-перемычкой BODEN. Если бит BODEN запрограммирован, при уменьшении напряжения ниже заданного уровня срабатывает схема сброса. Время сброса задается как и для сброса по включению питания (табл.4). Уровень сброса устанавливается битом BODLEVEL на 2.7В если бит не запрограммирован или на 4В если бит запрограммирован. Уровень срабатывания имеет гистерезис 50мВ.
Для того, чтобы произошел сброс падение напряжения до уровня срабатывания должно продержаться не менее 3мкС для уровня срабатывания 4В (7мкС для
2.7В).
СБРОС ПО СТОРОЖЕВОМУ ТАЙМЕРУ
По истечению периода работы сторожевого таймера генерируется импульс длительностью 1 период тактовой частоты. По заднему фронту этого импульса запускается таймер, отсчитывающий время сброса
РЕГИСТР СОСТОЯНИЯ ПРОЦЕССОРА - MCUSR
Этот регистр содержит информацию о том, что явилось причиной сброса процессора.
MCUSR

INT1 INT0 - - - - - -
RW RW R R R R R R
Начальное0 0 0 0 0 0 0 0
значение
Бит 7 - INT1: Запрос внешнего прерывания 1 разрешен. Когда этот бит установлен, а также установлен бит I регистра состояния, разрешается прерывание от внешнего вывода. Биты управления запуском прерывания (ISC11 и
ISC10) в регистре управления микроконтроллером (MCUCR) определяют по какому событию отрабатывается прерывание - по спадающему или нарастающему фронту или же по уровню. Активность на выводе приводит к возникновению прерываний даже если вывод сконфигурирован как выход. При возникновении прерывания выполняется программа, начинающаяся с адреса 002h в памяти программ. (см. также "Внешние прерывания").
Бит 6 - INT0: Запрос внешнего прерывания 0 разрешен. Когда этот бит установлен, а также установлен бит I регистра состояния, разрешается прерывание от внешнего вывода. Биты управления запуском прерывания (ISC01 и
ISC00) в регистре управления микроконтроллером (MCUCR) определяют по какому событию отрабатывается прерывание - по спадающему или нарастающему фронту или же по уровню. Активность на выводе приводит к возникновению прерываний даже если вывод сконфигурирован как выход. При возникновении прерывания выполняется программа, начинающаяся с адреса $001 в памяти программ. (см. также "Внешние прерывания").
Биты 5..0 - зарезервированы. В AT90S2333/4433 эти биты зарезервированы и всегда читаются как 0.
ОБЩИЙ РЕГИСТР ФЛАГОВ ПРЕРЫВАНИЙ
GIFR
0 0 Запрос на прерывание генерируется по низкому уровню
напряжения на входе INT1
0 1 Запрос по изменению уровня на входе INT1
1 0 Запрос на прерывание по спадающему фронту на входе INT1
1 1 Запрос на прерывание по нарастающ. фронту на входе INT1
ПРИМЕЧАНИЕ: При изменении битов ISC11/ISC10 прерывание INT1 должно быть запрещено очисткой соответствующего бита в регистре GIMSK. Иначе прерывание может возникнуть во время изменения битов.
Таблица 6. Управление срабатыванием прерывания 0.
ISC01 ISC0Описание
0 0 Запрос на прерывание генерируется по низкому уровню
напряжения на входе INT0
0 1 Запрос по изменению уровня на входе INT0
1 0 Запрос на прерывание по спадающему фронту на входе INT0
1 1 Запрос на прерывание по нарастающ. фронту на входе INT0
ПРИМЕЧАНИЕ: При изменении битов ISC01 и ISC00, прерывания по входу INT0 должны быть запрещены сбросом бита разрешения прерывания в регистре GIMSK.
Иначе прерывание может произойти при изменении значения битов.
РЕЖИМЫ ПОНИЖЕННОГО ЭНЕРГОПОТРЕБЛЕНИЯ.
Для запуска режима пониженного энергопотребления должен быть установлен
(1) бит SE регистра MCUCR, и должна быть исполнена команда SLEEP. Если во время нахождения в режиме пониженного потребления происходит одно из разрешенных прерываний, процессор начинает работать, исполняет подпрограмму обработки прерывания и продолжает выполнение программы с команды следующей за SLEEP. Содержимое регистрового файла и памяти ввода/вывода не изменяется. Если в режиме пониженного потребления происходит сброс, процессор начинает выполнение программы с вектора сброса.
Если для вывода из экономичного режима используется прерывание по уровню, низкий уровень должен удерживаться дольше времени отработки сброса.
Иначе процессор не начнет работу.
Режим холостого хода.
Когда бит SM сброшен (0), команда SLEEP переводит процессор в режим холостого хода (Idle mode). ЦПУ останавливается, но Таймеры/Счетчики, сторожевой таймер и система прерываний продолжают работать. Это позволяет процессору возобновлять работу как от внешних прерываний, так и по переполнению таймеров/счетчиков или по сбросу от сторожевого таймера. Если прерывание от аналогового компаратора не требуется, аналоговый компаратор может быть отключен установкой бита ACD регистра ACSR. Это уменьшает потребляемую мощность в режиме холостого хода. При выходе из режима холостого хода процессор запускается без задержки.
Экономичный режим.
Когда бит SM установлен (1), команда SLEEP переводит процессор в экономичный режим (Power Down Mode). В этом режиме останавливается внешний генератор тактовых импульсов. Пользователь может разрешить работу сторожевого таймера в этом режиме. Если сторожевой таймер разрешен, процессор выходит из экономичного режима после отработки периода сторожевого таймера. Если сторожевой таймер запрещен, выход из экономичного режима может произойти только по внешнему сбросу, brown-out сбросу или внешнему прерыванию по уровню.
Если для вывода из экономичного режима используется прерывание по уровню, низкий уровень должен удерживаться на время достаточное для запуска процессора. Это увеличивает устойчивость процессора к помехам. Изменение уровня дважды проверятся с периодом генератора сторожевого таймера, если обе выборки сигнала имеют необходимый уровень, процессор включается.
Номинальный период сторожевого таймера 1uS при 5В питания и температуре 25 градусов Цельсия.
При выходе из экономичного режима, от времени появления условия выхода до включения процессора проходит некоторое время необходимое для запуска кварцевого генератора. Задержка включения определяется теми же битами
CKSEL, что и время сброса. Длительность задержки на включение приведена в таблице 7.
Если условие включения исчезнет до того, как процессор запустится, например, низкий уровень на входе прерывания продержится недостаточно долго, процессор не выйдет из экономичного режима.
Таблица 7. Установка задержки включения
CKSEL [2:0] Время запуска
000 6CK
001 6CK
010 16K CK
011 16K CK
100 16K CK
101 1K CK
110 1K CK
111 1K CK
ТАЙМЕРЫ/СЧЕТЧИКИ
В AT90S2333/4433 предусмотрены два таймера/счетчика общего назначения.
8-разрядный и 16-разрядный. Каждый из таймеров индивидуально подключается к одному из выходов 10-разрядного предварительного делителя частоты. Оба таймера могут использоваться как таймеры с внутренним источником импульсов или счетчики импульсов поступающих извне. В качестве источника импульсов для таймеров можно выбрать сигнал с тактовой частотой процессора (CK), импульсы предварительного делителя (CK/8, CK/64, CK/256 или CK/1024) или импульсы с соответствующего внешнего вывода. Кроме того, таймеры могут быть остановлены, запретом прохождения импульсов на них.
8-РАЗРЯДНЫЙ ТАЙМЕР/СЧЕТЧИК 0
8-разрядный таймер/счетчик может получать импульсы тактовой частоты -
CK, импульсы с предварительного делителя (CK/8, CK/64, CK/256 или CK/1024), импульсы с внешнего вывода или быть остановлен соответствующими установками регистра TCCR0. Флаг переполнения таймера находится в регистре TIFR. Биты управления таймером расположены в регистре TCCR0. Разрешение и запрещение прерываний от таймера управляется регистром TIMSK.
При работе таймера/счетчика от внешнего сигнала, внешний сигнал синхронизируется с тактовым генератором ЦПУ. Для правильной обработки внешнего сигнала, минимальное время между соседними импульсами должно превышать период тактовой частоты процессора. Сигнал внешнего источника обрабатывается по спадающему фронту тактовой частоты процессора.
8-разрядный таймер/счетчик можно использовать как счетчик с высоким разрешением, так и для точных применений с низким коэффициентом деления тактовой частоты. Более высокие коэффициенты деления можно использовать для медленных функций или измерения временных интервалов между редкими событиями.
РЕГИСТР УПРАВЛЕНИЯ ТАЙМЕРОМ/СЧЕТЧИКОМ 0 - TCCR0
TCCR0
0 0 0 Таймер/счетчик остановлен
0 0 1 CK
0 1 0 CK/8
0 1 1 CK/64
1 0 0 CK/256
1 0 1 CK/1024
1 1 0 Внешний вывод T0, нарастающий фронт
1 1 1 Внешний вывод T0, спадающий фронт
Условие Stop запрещает/разрешает функционирование таймера/счетчика. В режимах деления используется частота тактового генератора. При использовании работы от внешнего источника предварительно должен быть установлен соответствующий бит регистра направления данных (0 - включает ножку на ввод).
ТАЙМЕР/СЧЕТЧИК 0 - TCNT0.
TCNT0
0 0 Таймер/счетчик 1 отключен от вывода OC1
0 1 Переключение выхода OC1
1 0 Сброс (0) вывода OC1
1 1 Установка (1) вывода OC1
Таблица 10. Установка режима работы ШИМ
PWM11 PWM10 Описание
0 0 Работа ШИМ запрещена
0 1 8 разрядный ШИМ
1 0 9 разрядный ШИМ
1 1 10 разрядный ШИМ
РЕГИСТР B УПРАВЛЕНИЯ ТАЙМЕРОМ/СЧЕТЧИКОМ 1 - TCCR1B
0 0 0 Таймер/счетчик 1
остановлен
0 0 1 CK
0 1 0 CK/8
0 1 1 CK/64
1 0 0 CK/256
1 0 1 CK/1024
1 1 0 Спадающий фронт на
выводе T1
1 1 1 Нарастающий фронт на
выводе T1
Условие Stop запрещает/разрешает функционирование таймера/счетчика. В режимах деления используется частота тактового генератора. При использовании работы от внешнего источника предварительно должен быть установлен соответствующий бит регистра направления данных (0 - включает ножку на ввод).
ТАЙМЕР/СЧЕТЧИК 1 - TCNT1H И TCNT1L
TCNT1H
7 6 5 4 3 2 1 0
2Dh(4Dh)
MSB - - - - - - -
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
TCNT1L
7 6 5 4 3 2 1 0
2Ch(4Ch)
LSB
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
Это 16-разрядный регистр, содержащий текущее значение таймера/счетчика 1.
Чтобы чтение и запись двух байт счетчика происходило синхронно, для работы с ним используется временный регистр (TEMP). Этот вре- менный регистр также используется при доступе к регистрам OCR1 и ICR1.
Если доступ к регистру с использованием TEMP производится и в основной программе и в обработчике прерывания, на время доступа к регистру из основной программы прерывания должны быть запрещены.
- Запись в таймер счетчик 1: При записи старшего байта в TCNT1H, записываемые данные помещаются в регистр TEMP. Затем, при записи младшего байта, он вместе с данными из TEMP переписывается в таймер/счетчик 1. Таким образом, при записи 16-разрядного значения первым должен записываться байт в TCNT1H.
- Чтение таймера/счетчика 1: При чтении младшего байта из TCNT1L, он посылается в процессор, а данные из TCNT1H переписываются в регистр TEMP, то есть одновременно читаются все 16-разрядов. При последующем чтении регистра TCNT1H, данные берутся из регистра TEMP. То есть при чтении 16- разрядного значения счетчика первым должен читаться регистр TCNT1L.
Таймер/счетчик 1 организован как суммирующий счетчик (в режиме ШИМ - суммирующий/вычитающий) с возможностью чтения и записи. Если задан источник тактовых импульсов для таймера/счетчика 1, после записи в него нового значения, счет продолжается с следующем за операцией записи периоде тактовой частоты.
РЕГИСТР СОВПАДЕНИЯ ТАЙМЕРА/СЧЕТЧИКА 1 - OCR1H И OCR1L
OCR1H
7 6 5 4 3 2 1 0
2Bh(4Bh)
MSB
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
OCR1L
7 6 5 4 3 2 1 0
3Dh(5Dh)
LSB
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
Регистр совпадения 16-разрядный регистр, доступный для чтения и записи. В этом регистре хранятся данные, которые непрерывно сравниваются с текущим значением таймера/счетчика 1. Действие по совпадению задается регистрами управления таймером/счетчиком 1 и регистром состояния. Поскольку регистр
OCR1A является 16-разрядным, при записи нового значения в регистр, для того чтобы оба байта регистра записывались одновременно, используется временный регистр (TEMP). При записи старшего байта, данные помещаются во временный регистр, который переписывается в OCR1AH при записи младшего байта в
OCR1AL. Таким образом, для записи в регистр первым должен записываться старший байт. Регистр TEMP используется при доступе к TCNT1 и ICR1, поэтому если временный регистр используется в основной программе и в прерываниях, при доступе к TEMP из основной программы прерывания должны запрещаться.
РЕГИСТР ЗАХВАТА ТАЙМЕРА/СЧЕТЧИКА 1 - ICR1H И ICR1L
ICR1H
7 6 5 4 3 2 1 0
25h(45h)
MSB
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
ICR1L
7 6 5 4 3 2 1 0
24h(44h)
LSB
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
Регистр захвата 16-разрядный регистр доступный только для чтения. По нарастающему или спадающему фронту (в соответствии с выбором фронта импульса захвата ICES1) сигнала на выводе ICP текущее значение таймера/счетчика 1 переписывается в регистр захвата ICR1. В это же время устанавливается флаг захвата ICF1. Поскольку регистр захвата является 16- разрядным, для чтения его значения, чтобы оба байта прочитались одновременно, используется временный регистр. При чтении младшего байта
ICR1L, он посылается в ЦПУ, а старший байт регистра ICR1H переписывается во временный регистр (TEMP). При чтении старшего байта, он принимается из временного регистра. Таким образом для чтения 16-разрядного регистра первым должен читаться младший байт. Регистр TEMP используется при доступе к TCNT1 и OCR1, поэтому если временный регистр используется в основной программе и в прерываниях, при доступе к TEMP из основной программы прерывания должны запрещаться.
ТАЙМЕР/СЧЕТЧИК 1 В РЕЖИМЕ ШИМ
При выборе режима широтно-импульсной модуляции (ШИМ), таймер/счетчик 1 и регистр совпадения OCR1A формируют 8, 9 или 10-разрядный непрерывный свободный от "дрожания" и правильный по фазе сигнал, выводимый на ножку
PB3(OC1). Таймер/счетчик 1 работает как реверсивный счетчик считающий от 0 до конечного значения (см. табл.10). При достижении конечного значения счетчик начинает считать в обратную сторону до нуля, после чего рабочий цикл повторяется. Когда значение счетчика совпадает с 8, 9 или 10-ю младшими битами регистра OCR1A, вывод PD1(OC1) устанавливается или сбрасывается в соответствии с установками бит COM1A1 и COM1A0 в регистре
TCCR1 (см. табл.11).
Таблица 12. Конечное значение таймера и частота ШИМ.
Разрешение Конечное значение Частота ШИМ
ШИМ таймера
8 бит 00FFh (255) Ftc1/510
9 бит 01FFh (511) Ftc1/1022
10 бит 03FFh (1023) Ftc1/2046
Таблица 13. Установка режима совпадения при работе ШИМ
COM1A1COM1A0Влияние на вывод OC1
0 0 не подключен
0 1 не подключен
1 0 очищается при совпадении, для возрастания счетчика и
сбрасывается для уменьшения (неинвертирующий ШИМ)
1 1 очищается при совпадении, для уменьшения счетчика и
сбрасывается для возрастания (инвертирующий ШИМ)

В режиме ШИМ, при записи в регистр OCR1A, 10 младших бит передаются во временный регистр и переписываются только при достижении таймером/счетчиком конечного значения. При этом устраняется появление несимметричных импульсов
(дрожания), которые неизбежны при асинхронной записи OCR1A. Во промежуток времени между записью во временный регистр и переписыванием его в OCR1, при обращении к OCR1 читается содержимое временного регистра. Если OCR1A содержит значение 0000h или конечное значение (TOP), вывод OC1 остается в том состоянии, которое определяется установками COM1A1 и COM1A0. Это показано в табл. 14.
Таблица 14. Выход ШИМ для OCR=0000h или TOP
COM1A1COM1A0OCR1A вывод OC1
1 0 0000h низкий
1 0 TOP высокий
1 1 0000h высокий
1 1 TOP низкий
В режиме ШИМ флаг переполнения таймера 1 (TOV1) устанавливается когда счетчик изменяет направление счета в точке 0000h. Прерывание по переполнению таймера 1 работает как при нормальном режиме работы таймера/счетчика, т.е. оно выполняется, если установлен флаг TOV1 и разрешены соответствующие прерывания. То же самое касается флага совпадения и прерывания по совпадению.
СТОРОЖЕВОЙ ТАЙМЕР
Сторожевой таймер работает от отдельного встроенного генератора работающего на частоте 1 MHz (это типовое значение частоты для питания 5В).
Управляя предварительным делителем сторожевого таймера можно задавать интервал сброса таймера от 16 до 2048 mS. Команда WDR сбрасывает сторожевой таймер. Для работы сторожевого таймера можно выбрать одно из 8-ми значений частоты, что позволяет в широких пределах изменять время между исполнением команды WDR и сбросом процессора. При отработке периода работы сторожевого таймера, если не поступила команда WDR, AT90S2313 сбрасывается, выполнение программы продолжается с вектора сброса.
Для предотвращения нежелательного отключения сторожевого таймера, для его запрещения должна выполняться определенная последовательность, которая описана при рассмотрении регистра WDTCR.
РЕГИСТР УПРАВЛЕНИЯ СТОРОЖЕВЫМ ТАЙМЕРОМ – WDTCR
WDTCR
7 6 5 4 3 2 1 0
21h(41h)
WDTOE WDE WDP2 WDP1 WDP0
R R R R RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
Биты 7..5 - зарезервированы. В AT90S2333/4433 эти биты зарезервированы и всегда читаются как 0.
Бит 4 - WDTOE - разрешение выключения сторожевого таймера. При очистке бита
WDE этот бит должен быть установлен (1). Иначе, работа сторожевого таймера не прекращается. Через четыре такта после установки этого бита, он аппаратно сбрасывается.
Бит 3 - WDE- разрешение сторожевого таймера. Если бит установлен (1), работа сторожевого таймера разрешена, если бит сброшен - запрещена. Сброс бита производится только в том случае, если бит WDTOE установлен в 1. Для запрещения включенного сторожевого таймера должна исполняться следующая процедура:
1. Одной командой записать 1 в WDTOE и WDE. Единица в WDE должна записываться даже в том случае если этот бит был установлен перед началом процедуры остановки таймера
2. В течение следующих четырех тактов процессора необходимо записать в WDE логический 0, при этом работа сторожевого таймера запрещается.
Биты 2..0 - WDP2..0 - Биты предварительного делителя сторожевого таймера.
Если работа сторожевого таймера разрешена, эти биты определяют предварительный коэффициент деления для сторожевого таймера. В таблице 15 приведены различные значения установок предварительного делителя и соответствующие им временные интервалы для напряжения питания Vcc=5V.
Таблица 15. Установки предварительного делителя сторожевого таймера

WDP2 WDP1 WDP0 период
времени
0 0 0 16K циклов
0 0 1 32K циклов
0 1 0 64K циклов
0 1 1 128K циклов
1 0 0 256 циклов
1 0 1 512 циклов
1 1 0 1024 циклов
1 1 1 2048 циклов
ЧТЕНИЕ И ЗАПИСЬ В ЭНЕРГОНЕЗАВИСИМУЮ ПАМЯТЬ
Регистры доступа к энергонезависимой памяти (EEPROM) расположены в пространстве ввода/вывода. Время записи лежитв диапазоне 2.5-4 mS и зависит от напряжения питания. Это самотактируемая функция которая, однако, позволяет пользователю определить, можно ли записывать следующий байт. Для определения возможности записи в EEPROM можно использовать специальное прерывание по готовности EEPROM. Инициированная запись в EEPROM заканчивается даже при возникновении условия сброса. Для защиты от нежелательной записи в EEPROM необходимо следовать некоторым правилам, которые будут рассмотрены ниже, при описании управляющего регистра энергонезависимой памяти. При записи или чтении EEPROM процессор приостанавливается на 2 машинных цикла до начала выполнения следующей команды. При чтении из EEPROM процессор приостанавливается на четыре машинных цикла перед тем как начнет выполняться следующая команда.
РЕГИСТР АДРЕСА EEPROM – EEAR
7 6 5 4 3 2 1 0
1Eh(3Eh)
EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
Регистр EEAR задает адрес одного из 128/256 байт адресного пространства
EEPROM. Байты данных адресуется линейно в диапазоне от 0 до 127/255.
Начальное значение регистра EEAR неопределено, поэтому перед доступом к
EEPROM в этот регистр должно быть записано требуемое число.
РЕГИСТР ДАННЫХ EEPROM – EEDR
7 6 5 4 3 2 1 0
1Dh(3Dh)
MSB LSB
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
Биты 7..0 - EEDR7..0 - Данные EEPROM. При записи регистр EEDR содержит данные, которые записываются в EEPROM по адресу в регистре EEAR. Для операции чтения в этот регистр читаются данные прочитанные из EEPROM по адресу заданному в регистре EEAR.
РЕГИСТР УПРАВЛЕНИЯ EEPROM - EECR
7 6 5 4 3 2 1 0
1Ch(3Ch)
EERIE EEMWE EEWE EERE
R R R R R RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
Биты 7..4 - зарезервированы. В AT90S2333/4433 эти биты зарезервированы и всегда читаются как 0.
Бит 3 - EERIE - Разрешение прерывания по готовности EEPROM. Если установлены биты I в регистре SREG и EERIE, разрешается прерывание по готовности EEPROM. Это прерывание возникает непрерывно, если сброшен бит
EEWE.
Бит 2 - EEMWE - Управление разрешением записи. Этот бит определяет, будут ли записаны данные при установке EEWE. Если бит EEMWE установлен, при установке EEWE данные записываются по выбранному адресу EEPROM. Если этот бит сброшен, установка EEWE не имеет эффекта. После программной установки этот бит сбрасывается аппаратно через четыре такта процессора.
Бит 1 - EEWE - Разрешение записи в EEPROM. Сигнал EEWE является стробом записи в EEPROM. После установки правильных адреса и данных для записи в
EEPROM необходимо установить бит EEWE. При записи "1" в бит EEWE должен быть установлен бит EEMWE, тогда происходит запись в
EEPROM. Для записи в EEPROM должна соблюдаться следующая последовательность
(порядок шагов 2 и 3 необязателен):
1Ждем обнуления EEWE
2Записываем адрес в EEAR (не обязательно)
3Записываем данные в EEDR (не обязательно)
4Устанавливаем в 1 бит EEMWE
5Не позже чем через 4 такта после установки EEMWE
устанавливаем EEWE
После того как время записи истечет (типично 2.5 mS для Vcc=5V и 4mS для
Vcc=2.7), бит EEWE очищается аппаратно. Пользователь может отслеживать этот бит и ожидать его установки в ноль, перед тем как записывать следующий байт. При установке EEWE, ЦПУ останавливается на два цикла перед исполнением следующей команды.
Бит 0 - EERE - разрешение чтения из EEPROM. Сигнал EERE является стробом чтения из EEPROM. После установки нужного адреса в регистре EEAR, необходимо установить бит EERE. После того как бит EERE будет аппаратно очищен, в регистре EEDR. Чтение EEPROM занимает одну команду и не требует отслеживания бита EERE. При установке бита EERE, ЦПУ останавливается на два цикла перед тем как будет выполнена следующая команда. Перед чтением пользователь должен проверять состояние бита EEWE, если регистры данных или адреса изменяются во время операции записи, запись в ячейку прерывается и результат операции записи становится неопределенным.
ПОСЛЕДОВАТЕЛЬНЫЙ ИНТЕРФЕЙС SPI
Интерфейс SPI позволяет производить высокоскоростной синхронный обмен данными между AT90S2333/4433 и периферийными устройствами или несколькими процессорами. SPI-интерфейс предлагает следующие возможности:
1. Полностью дуплексная 3-проводная синхронная передача данных;
2. Работа в режиме ведущего или ведомого;
3. Передача начиная со старшего или младшего бита;
4. Четыре программируемые скорости передачи;
5. Флаг прерывания по окончанию передачи;
6. Флаг защиты от коллизий при записи
7. Выход из режима Idle.
Соединение между ведущим и ведомым контроллерами показана ниже. Вывод
PB5(SCK) является выходом тактовых импульсов для ведущего контроллера и входом для ведомого. Запись в регистр данных SPI ведущего контроллера запускает тактовый генератор. Записанные данные сдвигаются через вывод
PB3(MOSI) на вывод PB3(MOSI) ведомого контроллера. После того как байт будет выведен тактовый генератор останавливается и выставляет флаг окончания передачи (SPIF). Если разрешены прерывания (установлен бит SPIE в регистре SPCR), вызывается соответствующее прерывание. Вывод PB2(SS) ведомого контроллера должен быть подключен на землю. Два сдвиговых регистра в ведущем и ведомом контроллерах можно рассматривать как один распределенный 16-разрядный регистр сдвига. Когда данные сдвигаются из ведущего контроллера в ведомый, то же самое происходит в обратном направлении. За один цикл сдвига ведущий и ведомый контроллеры обмениваются байтами данных.
Система имеет одиночный буфер в направлении передачи и двойной в направлении приема. Передаваемый символ не записывается в регистр данных
SPI до тех пор, пока передача не завершится. При приеме до завершения операции сдвига данные должны быть прочитаны из регистра данных. Иначе предыдущий символ теряется. При разрешении SPI выводы MOSI, MISO, SCK и SS устанавливаются на ввод/вывод в соответствии с таблицей.
Таблица 16. Установка выводов SPI
ВывоНаправление в режиме Направление в режиме
д ведущего ведомого
MOSIОпределяется Вход
пользователем
MISOВход Определяется
пользователем
SCK Определяется Вход
пользователем
SS Определяется Вход
пользователем
РАБОТА ВЫВОДА SS
Если SPI сконфигурирован как ведущий (установлен бит MSTR в SPCR), пользователь может задавать направление ввода для ножки SS. Если SS сконфигурирован на вывод, ножка работает как бит ввода/вывода общего назначения не влияющий на работу SPI. Если ножка сконфигурирована на ввод, на нее необходимо подать высокий уровень, чтобы SPI работал в режиме ведущего. Если в режиме ведущего ножка SS установлена на ввод и внешним устройством устанавливается в низкий уровень, системой SPI это воспринимается как выбор шины другим ведущим устройством и попытка передать данные ведомому. Для избежания конфликтов на шине система SPI делает следующее:
1. Сбрасывается бит MSTR в SPCR, система SPI становится ведомой. При этом ножки MOSI и SCK становятся входами.
2. Устанавливается флаг SPIF в SPSR, если разрешены прерывания, будет исполнена программа обслуживания прерывания.
Таким образом если передача по SPI производится в режиме ведущего и существует возможность установки вывода SS в низкий уровень, прерывание должно отслеживать установлен ли бит MSTR. Если бит MSTR будет сброшен при переходе в режим ведомого контроллера, обратно он должен быть установлен пользователем.
Если система SPI сконфигурирована как ведомая, вывод SS всегда является входом. Когда SS переводится в низкий уровень, система SPI активируется и ножка MISO, если это задано пользователем, становится выходом. Другие выводы являются входами. Если внешним устройством на вывод SS подан высокий уровень, все выводы становятся входами, а система SPI становится пассивной, т.е. не будет принимать данные.
Режимы обмена данными

Биты CPHA и CPOL определяют четыре комбинации фазы и полярности SCK относительно битов данных. Битом CPOL задается полярность импульсов на выводе SCK, при CPOL=0 полярность импульсов положительная, при отсутствии импульсов на выводе удерживается низкий уровень. При CPOL=1 полярность импульсов отрицательная, при отсутствии импульсов на выходе высокий уровень. Битом CPHA задается фронт по которому обрабатываются биты данных.
При CPHA=0 обработка происходит по переднему фронту импульсов SCK (для
CPOL=0 переход из низкого уровня в высокий, для CPOL=1 - из высокого в низкий). При CPHA=1 обработка происходит по заднему фронту импульсов SCK.
РЕГИСТР УПРАВЛЕНИЯ SPI – SPCR
7 6 5 4 3 2 1 0
0Dh(2Dh)
SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO0
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 1 0 0
значение
Бит 7 - SPIE - Разрешение прерываний от SPI - если этот бит установлен, при установке бита SPIF в регистре SPSR выполняется прерывание от SPI, если разрешены общие прерывания.
Бит 6 - SPE - Разрешение SPI - Этот бит должен быть установлен для осуществления любых операций по шине SPI.
Бит 5 - DORD - Порядок бит данных - Если этот бит установлен, при обмене первым передается младший бит данных. Если бит сброшен – первым передается старший бит.
Бит 4 - MSTR - Выбор ведущего/ведомого - При установке этого бита шина SPI работает в режиме ведущего, при сбросе - в режиме ведомого. Если вывод SS сконфигурирован как вход и устанавливается в низкий уровень когда установлен бит MSTR, бит MSTR сбрасывается и устанавливается бит SPIF в регистре SPSR. Для возобновления работы в режиме ведущего пользователь должен установить этот бит.
Бит 3 - CPOL - Полярность тактовых сигналов - Этим битом задается полярность импульсов на выводе SCK, при CPOL=0 полярность импульсов положительная, при отсутствии импульсов на выводе удерживается низкий уровень. При CPOL=1 полярность импульсов отрицательная, при отсутствии импульсов на выходе высокий уровень.
Бит 2 - CPHA - Фазировка тактовых импульсов. - Этим битом задается фронт по которому обрабатываются биты данных. При CPHA=0 обработка происходит по переднему фронту импульсов SCK (для CPOL=0 переход из низкого уровня в высокий, для CPOL=1 - из высокого в низкий). При CPHA=1 обработка происходит по заднему фронту импульсов SCK.
Биты 1,0 - SPR1,SPR0 - Выбор тактовой частоты SPI. - Этими битами задается скорость работы SPI шины для ведущего устройства. Для ведомого контролерра установка этих бит не имеет значения. Соотношение тактовой частоты процессора и частоты SCK приведено в таблице:
Таблица 17. Соотношение между SCK и тактовой частотой процессора
SPR1SPR0Частота SCK SPR1SPR0Частота
SCK
0 0 Fck/4 1 0 Fck/64
0 1 Fck/16 1 1 Fck/128
РЕГИСТР СОСТОЯНИЯ SPI – SPSR

7 6 5 4 3 2 1 0
0Eh(2Eh)
SPIF WCOL - - - - - -
R R R R R R R R
Начальное0 0 0 0 0 1 0 0
значение
Бит 7 - SPIF - флаг прерывания SPI. После завершения обмена устанавливается бит SPIF и генерируется прерывание, если установлен бит SPIE в SPCR и разрешены глобальные прерывания. Этот флаг устанавливается и в том случае, если на вывод SS, сконфигурированный как вход, подается низкий уровень, когда SPI работает в режиме ведущего. Флаг SPIF сбрасывается аппаратно при выполнении соответствующего вектора прерывания. Кроме того бит SPIF, если он был установлен, сбрасывается при первом же чтении регистра SPSR и последующем доступе к регистру данных SPI.
Бит 6 - WCOL - Ошибка записи. - Этот бит устанавливается при записи в регистр SPDR во время обмена. Чтение регистра во время обмена дает неверный результат, запись в него не производится. Так же как и бит SPIF, WCOL сбрасывается (если он был установлен) при первом же чтении регистра SPSR и последующем доступе к регистру SPDR.
Биты 5..0 - зарезервированы. В AT90S2333/4433 эти биты зарезервированы и всегда читаются как 0.
SPI интерфейс также используется для загрузки и чтения памяти программ и содержимого EEPROM процессора, программирование процессора через SPI интерфейс будет рассмотрено ниже.
РЕГИСТР ДАННЫХ SPI – SPDR
7 6 5 4 3 2 1 0
0Fh(2Fh)
MSB LSB
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
Регистр данных SPI доступен для чтения и записи и используется для обмена данными между набором регистров и регистром сдвига SPI. Запись в регистр инициирует передачу данных. При чтении регистра читаются данные и буфера регистра сдвига.
УНИВЕРСАЛЬНЫЙ АСИНХРОННЫЙ ПРИЕМО-ПЕРЕДАТЧИК
В состав AT90S2333/4433 входит универсальный асинхронный приемопередатчик
(UART), его основные особенности:
- генерация произвольных значений скорости
- высокая скорость при низких тактовых частотах
- 8 или 9 бит данных
- фильтрация шума
- Определение переполнения
- Детектирование ошибки кадра
- Определение неверного стартового бита
- Три раздельных прерывания - завершение передачи, очистка регистра передачи и завершение приема.
- Режим мультипроцессорного обмена.
Передача данных
Передача данных инициируется записью передаваемых данных в регистр ввода/вывода данных UART - UDR. Данные пересылаются из UDR в сдвиговый регистр передатчика когда:
- новый символ записывается в UDR после того как был выдвинут стоповый бит для предыдущего символа. При этом сдвиговый регистр загружается сразу.
- новый символ записывается в UDR до того как выдвинут стоповый бит для предыдущего символа. При этом сдвиговый регистр записывается сразу после того, как будет выдвинут стоповый бит предыдущего символа.
При этом в регистре состояния UART - USR устанавливается бит-признак очистки регистра данных - UDRE/ Когда этот бит установлен, UART готов к приему следующего символа. При перезаписи UDR в 10(11)- разрядный сдвиговый регистр, бит 0 сдвигового регистра обнуляется (стартовый бит), а бит 9 или
10 устанавливается (стоповый бит). Если выбрано 9-битовое слово данных
(установлен бит CHR9 в регистре UCR), бит TXB8 из UCR переписывается в 9-й бит сдвигового регистра передатчика.
После тактового импульса, следующего с частотой передачи, стартовый бит выдвигается на вывод TXD. Затем выдвигаются данные, начиная с младшего бита. После того как выдвинут стоповый бит, в сдвиговый регистр загружаются новые данные, если они были записаны в UDR во время передачи.
При загрузке устанавливается бит UDRE. Если до выдвижения стопового бита в регистр UDR не поступают новые данные, UDRE остается установленным до последующей записи UDR. Если новые данные не поступили и на выводе TXD появляется стоповый бит, в регистре USR устанавливается флаг окончания передачи - TXC.
Установка бита TXEN в UCR разрешает работу передатчика. При очистке бита
TXEN, вывод PD1 можно использовать для ввода/вывода данных. Если бит TXEN установлен, передатчик UART подключен к выводу PD1 независимо от установки бита DDD1 в регистре DDRD.
Прием данных
Логическая схема приемника обрабатывает сигнал на выводе RXD с частотой в
16 больше скорости передачи (для обработки одного бита принимаемой последовательности, производится 16 выборок входного сигнала). В состоянии ожидания одна выборка логического нуля интерпретируется как спадающий фронт стартового бита, после чего запускается последовательность обнаружения стартового бита. Если в первой выборке сигнала обнаружен нулевой отсчет, приемник обрабатывает 8, 9 и 10 выборки сигнала на выводе RXD. Если хотя бы две из трех выборок равны логической единице, стартовый бит считается шумом и приемник ждет следующего перехода из 1 в 0. Если обнаружен стартовый бит, начинается обработка бит данных. Решение об уровне данных также производится по 8, 9 и 10 выборкам входного сигнала, уровень входного сигнала определяется по равенству двух выборок. После того как уровень данных определен, данные вдвигаются в сдвиговый регистр приемника. Для определения стопового бита хотя бы две из трех выборок входного сигнала должны быть равны 1. Если это условие не выполняется, в регистре USR устанавливается флаг ошибки кадра FE. Перед чтением данных из регистра UDR пользователь должен проверять бит FE для обнаружения ошибок кадра.
Независимо от принятия правильного стопового бита по окончанию приема символа принятые данные переписываются в UDR и устанавливается флаг RXC в регистре USR. Физически регистр UDR состоит из двух отдельных регистров, один используется для передачи данных, другой - для приема. При чтении UDR происходит доступ к регистру приемника, при записи - к регистру передатчика. При обмене 9-битовыми данными 9-й бит принятых данных записывается в бит RXB8 регистра UCR. Если при приеме символа из регистра
UDR не был прочитан предыдущий символ, в регистре UCR устанавливается флаг переполнения - OR. Установка этого бита означает, что последний принятый байт данных не переписывается из сдвигового регистра в регистр UDR и будет потерян. Бит OR буферирован и обновляется при чтении правильных данных из
UDR. Таким образом, пользователь всегда может проверить состояние OR после чтения UDR и обнаружить происшедшее переполнение. При сбросе бита RXEN в регистре UCR прием данных запрещается. При этом вывод PD0 можно использовать для ввода/вывода общего назначения. При установке RXEN, приемник подключен к выводу PD0 независимо от состояния бита DDD0 в регистре DDRD.
Режим мультипроцессорного обмена Режим многопроцессорного обмена позволяет нескольким ведомым процессорам принимать данные от ведущего. Для этого сначала декодируется адресный байт, который определяет к какому из процессоров обращается ведущий.
Если ведомый процессор принял правильный адрес, последующие байты он принимает как данные, в то время как остальные ведомые процессоры игнорируют принимаемые байты до приема следующего адреса. Для работы в режиме ведущего процессор должен установить 9-битовый режим передачи
(установлен бит CHR9 в UCSRB). Для передачи адресного байта девятый бит должен устанавливаться в 1, и сбрасываться для передачи байтов данных. В ведомых процессорах механизм приема слегка отличается для 8-ми и 9-ти битового режима приема. При приеме восьми бит (сброшен бит CHR9 в UCSRB), стоповый бит для адресного байта равен единице и равен нулю для байт данных. В 9-ти битовом режиме для адресного байта устанавливается 9-й бит, для байт данных он будет сброшен, стоповый бит всегда будет равен 1. Для обмена данными в многопроцессорном режиме необходимо выполнить следующую процедуру.
1. Все подчиненные процессоры устанавливают обмен в многопроцессорном режиме (установлен бит MPCM в UCSRA)
2. Ведущий процессор посылает адресный байт, все подчиненные процессоры читают и принимают этот байт. В ведомых процессорах устанавливается флаг
RXC в UCSRA.
3. Каждый из ведомых процессоров читает регистр UDR и определяет был ли он выбран. Если процессор выбран, он сбрасывает флаг MPCM в UCSRA, иначе он будет ожидать следующего адресного байта.
4. Для каждого принятого байта данных в ведомом процессоре устанавливается флаг завершения приема (RXC в UCSRA). Кроме того в 8-битовом режиме будет генерироваться ошибка кадра (FE в UCSRA), поскольку стоповый бит будет равен 0. В других подчиненных процессорах установлен бит MPCM, поэтому байты данных будут игнорироваться, регистр UDR не записывается, флаги RXC и FE не устанавливаются.
5. После передачи последнего байта данных процесс повторяется с шага 2.
Управление UART
РЕГИСТР ВВОДА/ВЫВОДА UART
7 6 5 4 3 2 1 0
0Ch(2Ch)
MSB LSB
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 1 0 0
значение
Физически регистр UDR является двумя отдельными регистрами, доступ к которым происходит по одному адресу. При записи происходит запись в регистр передатчика, при чтении - читается регистр приемника.
РЕГИСТР УПРАВЛЕНИЯ И СОСТОЯНИЯ UART (UСSRA)
7 6 5 4 3 2 1 0
0Bh(2Bh)
RXC TXC UDRE FE OR - - MPCM
R RW R RW RW RW RW RW
Начальное0 0 1 0 0 1 0 0
значение
Бит 7 - RXC - прием завершен. Этот бит устанавливается в 1 когда принятый символ переписывается из сдвигового регистра приемника в регистр UDR. Бит устанавливается независимо от обнаружения ошибки кадра. Если установлен бит
RXCIE в регистре UCR, при установке бита выполняется прерывание по завершению приема символа. RXC сбрасывается при чтении UDR. При использовании приема данных по прерыванию, обработчик прерывания должен читать регистр UDR для сброса RXC, иначе при выходе из прерывания оно будет вызвано снова.
Бит 6 - TXC - передача завершена. Этот бит устанавливается в 1 если символ из сдвигового регистра передатчика (включая стоповый бит) передан, а в регистр UDR не были записаны новые данные. Этот флаг особенно полезен при полудуплексной связи, когда предающее устройство должно перейти в режим приема и освободить линию связи сразу по окончанию передачи. Если установлен бит TXIE в регистре UCR, при установке TXC выполняется прерывания по окончанию передачи. TXC сбрасывается аппаратно при выполнении соответствующего вектора прерывания. Кроме того, бит можно сбросить записав в него 1.
Бит 5 - UDRE - регистр данных UART пуст. Этот бит устанавливается в 1 когда данные, записанные в UDR переписываются в регистр сдвига передатчика.
Установка этого бита означает, что передатчик готов принять следующий символ для передачи. Если установлен бит UDRIE в регистре UCR, при установке этого бита выполняется прерывание окончания передачи. Бит UDRE сбрасывается при записи регистра UDR. При использовании передачи управляемой прерыванием, подпрограмма обслуживания прерывания должна записывать UDR, чтобы сбросить бит UDRE, иначе при выходе из прерывания оно будет вызвано снова. При сбросе этот бит устанавливается в 1, чтобы проиндицировать готовность передатчика.
Бит 4 - FE - ошибка кадра. Этот бит устанавливается при обнаружении условия ошибки кадра, т.е. если стоповый бит принятого байта равен 0. Бит FE сбрасывается при приеме единичного стопового бита.
Бит 3 - OR - переполнение. Этот бит устанавливается при обнаружении условия переполнения, т.е. когда символ из регистра UDR не был прочитан до того, как заполнился сдвиговый регистр приемника. Этот бит буферирован, т.е. остается установленным до тех пор, пока из регистра UDR не будут прочитаны правильные данные. Бит OR сбрасывается когда принятые данные переписываются в UDR.
Биты 2..1 - зарезервированы. В AT90S2333/4433 эти биты зарезервированы и всегда читаются как 0.
Бит 0 - MPCM - режим мультипроцессорного обмена. Этот бит используется для перехода в режим мультипроцессорного обмена. Этот бит устанавливается когда ведомый процессор ожидает приема адресного байта. Когда ведомый процессор распознает свой адрес он должен сбросить бит MPCM и начать прием данных.
РЕГИСТР УПРАВЛЕНИЯ И СОСТОЯНИЯ UART (UСSRB)
7 6 5 4 3 2 1 0
0Ah(2Ah)
RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8
RW RW RW RW RW RW R W
Начальное0 0 0 0 0 1 0 0
значение
Бит 7 - RXCIE - Разрешение прерывания по окончанию приема. Если этот бит установлен (1), установка бита RXC в регистре UCSRA приводит к выполнению прерывания по окончанию приема (при условии что разрешены прерывания).
Бит 6 - TXCIE - Разрешение прерывания по окончанию передачи. Если этот бит установлен, установка бита TXC в UCSRA приводит к выполнению прерывания по окончанию передачи (при условии, что прерывания разрешены).
Бит 5 - UDRIE - Прерывание по очистке регистра данных последовательного порта. Если этот бит установлен, установка бита UDRE в UCSRA приводит к выполнению прерывания по очистке регистра данных UART (при условии, что прерывания разрешены).
Бит 4 - RXEN - Разрешение приемника. При установке этого бита разрешается работа приемника UART. Если приемник выключен, флаги TXC, OR и FE не устанавливаются. Если эти флаги установлены, сброс RXEN не очищает их.
Бит 3 - TXEN - Разрешение передатчика. При установке этого бита разрешается работа передатчика UART. При запрещении работы передатчика во время передачи символа, он продолжает работать пока не будет очищен сдвиговый регистр и не будет передан символ, помещенный в UDR.
Бит 2 - CHR9 - 9-битовые посылки. Если этот бит установлен, принимаемые и передаваемые символы имеют длину 9 бит. Для передачи и приема 9-го символа используются биты RXB8 и TXB8 соответственно. 9-й бит можно использовать как дополнительный стоповый бит или как признак четности.
Бит 1 - RXB8 - Бит 8 принимаемых данных. Если установлен бит CHR9, сюда записывается 9-й бит принятых данных.
Бит 0 - TXB8 - Бит 8 передаваемых данных. Если установлен бит CHR9, отсюда берется 9-й бит передаваемых данных.
ГЕНЕРАТОР СКОРОСТИ ПЕРЕДАЧИ
Генератор скорости передачи это делитель частоты, который генерирует скорости в соответствии с нижеприведенным выражением:
BAUD = Fck / (16*(UBRR+1)) здесь BAUD - скорость передачи (бод)
Fck - частота тактового генератора процессора
UBRR - содержимое регистров UBRRH и UBRR (0...4095)
В следующей таблице приведены значения регистра UBRR и процентное отклонение от стандартной скорости передачи для стандартных частот кварцевых генераторов.
Таблица.18
Скор.1.000Ош. Скор.1.8432Ош. Скор.2.000Ош.
, 0 % , % , 0 %
бод MHz бод MHz бод MHz
2400 25 0.2 2400 47 0 2400 51 0.2
4800 12 0.2 4800 23 0 4800 25 0.2
9600 6 7.5 9600 11 0 9600 12 0.2
144003 7.8 144007 0 144008 3.7
2 7.8 5 0 6 7.5
192001 7.8 192003 0 192003 7.8
1 22.9 2 0 2 7.8
288000 288001 0 288001 7.8
0 7.8 1 33.0 1 22.9
384000 22.9384000 384000 7.8
0
57600 84.357600 57600

76800 76800 76800

11520 11520 11520
0 0 0
Скор.3.276Ош. Скор.3.6864Ош. Скор.4.000Ош.
, 8 % , % , 0 %
бод MHz бод MHz бод MHz
2400 84 0.4 2400 95 0.0 2400 103 0.2
4800 42 0.8 4800 47 0.0 4800 51 0.2
9600 20 1.6 9600 23 0.0 9600 25 0.2
1440013 1.6 1440015 0.0 1440016 2.1
10 3.1 11 0.0 12 0.2
192006 1.6 192007 0.0 192008 3.7
4 6.3 5 0.0 6 7.5
288003 12.5288003 0.0 288003 7.8
2 2 0.0 2 7.8
384001 12.5384001 0.0 384001 7.8

57600 12.557600 57600

76800 76800 76800

11520 11520 11520
0 0 0
Скор.7.372Ош. Скор.8.0000Ош. Скор.9.216Ош.
, 8 % , % , 0 %
бод MHz бод MHz бод MHz
2400 191 0.0 2400 207 0.2 2400 239 0.0
4800 95 0.0 4800 103 0.2 4800 119 0.0
9600 47 0.0 9600 51 0.2 9600 59 0.0
1440031 0.0 1440034 0.8 1440039 0.0
23 0.0 25 0.2 29 0.0
1920015 0.0 1920016 2.1 1920019 0.0
11 0.0 12 0.2 14 0.0
288007 0.0 288008 3.7 288009 0.0
5 0.0 6 7.5 7 6.7
384003 0.0 384003 7.8 384004 0.0

57600 57600 57600

76800 76800 76800

11520 11520 11520
0 0 0
РЕГИСТР СКОРОСТИ ПЕРЕДАЧИ (UBRR)
UBRRHI
7 6 5 4 3 2 1 0
03h(23h)
MSB - - -
R R R R RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
UBRR
7 6 5 4 3 2 1 0
09h(29h)
LSB
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
Это 12-разрядный регистр, который задает скорость передачи последовательного порта в соответствии с выражением приведенным выше. В регистре UBRRHI хранятся 4 старших бита, в UBRR - 8 младших бит.
АНАЛОГОВЫЙ КОМПАРАТОР
Аналоговый компаратор сравнивает входные напряжение на положительном входе PD6 (AIN0) и отрицательном входе PD7(AIN1). Когда напряжение на положительном входе больше напряжения на отрицательном, устанавливается бит
ACO (Analog Comparator Output). Выход аналогового компаратора можно установить на работу с функцией захвата Таймера/Счетчика1. Кроме того, компаратор может вызывать свое прерывание. Пользова- тель может установить установить срабатывание прерывания по нарастающему или спадающему фронту, или по переключению.
РЕГИСТР УПРАВЛЕНИЯ И СОСТОЯНИЯ АНАЛОГОВОГО КОМПАРАТОРА (ACSR).
ACSR
7 6 5 4 3 2 1 0
08h(28h)
ACD AINBG ACO ACI ACIE ACIC ACIS1 ACIS0
RW R R RW RW RW RW RW
Начальное0 0 0 0 0 1 0 0
значение

Бит 7 - ACD - Запрещение аналогового компаратора. Когда этот бит установлен, питание от аналогового компаратора отключается. Для отключения компаратора этот бит можно установить в любое время. Обычно это свойство используется если критично потребление процессора в холостом режиме и восстановление работы процессора от аналогового компаратора не требуется.
При изменении бита ACD прерывания от аналогового компаратора должны быть запрещены сбросом ACIE в регистре ACSR. В противном случае прерывание может произойти во время изменения бита.
Бит 6 - AINBG - Выбор напряжения сравнения аналогового компаратора. Когда этот бит установлен, вывод AIN0 подключается к напряжению 1.22 + 0.05В.
Когда бит сброшен возобновляется нормальная работа вывода AIN0.
Бит 5 - ACO - Выход аналогового компаратора. Бит ACO непосредственно подключен к выходу аналогового компаратора.
Бит 4 - ACI - Флаг прерывания от аналогового компаратора. Этот бит устанавливается когда переключение выхода компаратора совпадает с режимом прерывания установленным битами ACIS1 и ACIS0. Программа обработки прерывания от аналогового компаратора выполняется если установлен бит ACIE
(1) и установлен бит I в регистре состояния. ACI сбрасывается аппаратно при выполнении соответствующего вектора прерывания. Другой способ очистить ACI
- записать во флаг логическую единицу.
Бит 3 - ACIE - Разрешение прерывания от аналогового компаратора. Когда установлен этот бит и бит I регистра состояния, прерывания от аналогового компаратора отрабатываются. Если бит очищен (0), прерывания запрещены.
Бит 2 - ACIC - Захват по выходу аналогового компаратора. Если этот бит установлен, функция захвата таймера/счетчика1 управляется выходом аналогового компаратора. При этом выход компаратора подключается непосредственно к схеме обработки захвата, предоставляя удобные средства подавления шума и выбора фронта предусмотренные прерыванием захвата по входу. Когда бит очищен, схема захвата и компаратор разъединены. Чтобы компаратор мог управлять функцией захвата таймера/счетчика1, должен быть установлен бит TICIE1 в регистре TIMSK.
Биты 1,0 - ACIS1, ACIS0 - Выбор режима прерывания аналогового компаратора.
Различные установки приведены ниже.
Таблица 19. Установки ACIS1/ACIS0
ACISACISОписание
1 0
0 0 Прерывание от компаратора по переключению
выхода
0 1 Зарезервировано
1 0 Прерывание от компаратора по спадающему
фронту выхода
1 1 Прерывание от компаратора по нарастающему
фронту выхода
Примечание: При изменении битов ACIS1/ACIS0 прерывания от аналогового компаратора должны быть запрещены сбросом бита разрешения прерывания в регистре ACSR. Иначе прерывание может произойти при изменении битов.
АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ
Основные характеристики:
- разрешение 10 бит
- точность +- 1/2 младшего разряда
- время преобразования 65-260 uS
- 6 мультиплексирумых входов
- работа с полным размахом напряжения
- непрерывный режим или одиночные преобразования
- прерывание по завершению преобразования
- подавление шума в режиме Sleep
AT90S2333/4433 имеют 10-разрядный АЦП последовательного приближения. АЦП подключен к выходу шестивходового мультиплексора. Мультиплексор позволяет подключать на вход АЦП любой из входов порта C. В состав АЦП входит усилитель выборки-хранения, который позволяет сохранять на входе АЦП уровень напряжения постоянный за время преобразования.
АЦП имеет два отдельных вывода питания AVCC и AGND. ФПТВ должен подключаться к GND, напряжение на AVCC не должно отличаться от VCC более чем на +-0.3В. Внешнее опорное напряжение должно подаваться на вывод AREF.
Это напряжение должно лежать в пределах AGND-AVCC.
РАБОТА АЦП
АЦП может работать в двух режимах - одиночного преобразования и непрерывном. В режиме одиночного преобразование каждое преобразование инициируется пользователем. В непрерывном режиме АЦП производит непрерывную обработку входного сигнала и обновляет регистр данных АЦП. Переключение режимов осуществляется битом ADFR в регистре ADCSR. Регистр ADMUX выбирает один из шести входов подключаемый ко входу АЦП. Кроме того в качестве входа можно использовать фиксированное опорное напряжение. Работа АЦП разрешается записью логической "1" в бит разрешения АЦП (ADEN в ADCSR). Перед первым преобразованием после разрешения АЦП выполняется одно "пустое" преобразование инициализирующее АЦП. Для пользователя единственное отличие первого преобразования от последующих заключается в том, что оно занимает
25 тактовых импульсов вместо обычных 13.
Преобразование запускается записью логической 1 в бит запуска АЦП - ADCS.
Этот бит остается установленным пока идет преобразование и аппаратно сбрасывается, когда преобразование завершается. Если во время преобразования происходит переключение канала, пред переключением АЦП завершает текущее преобразование.
Операция выборки-хранения занимает один цикл после запуска преобразования.
Это позволяет пользователю устанавливать номер входного канала одновременно с запуском преобразования Поскольку результат преобразования занимает 10 разрядов, для хранения результата используется два регистра ADCH и ADCL, которые должны быть прочитаны для получения результата. Для защиты данных, чтобы обеспечить чтение результата одного преобразования из обоих регистров используется специальная логика защиты данных.
Этот механизм работает так:
При чтении данных первым должен читаться регистр ADCL. Доступ АЦП к регистру данных блокируется. Это приводит к тому, что если прочитан байт
ADCL и преобразование завершилось до того как прочитан регистр ADCH, регистр данных не изменяется и результат преобразования будет потерян.
Доступ АЦП к регистру данных разрешается после чтения ADCH. АЦП имеет собственное прерывание, которое выполняется по завершению преобразования.
Если доступ АЦП к регистру данных запрещен (между чтением ADCL и ADCH), прерывание вызывается даже если данные потеряны. Предварительный делитель
АЦП работает с тактовыми частотами в диапазоне 50-200 kHz. Для полного преобразования АЦП необходимо 13 тактов, т.е. преобразование занимает от 65 до 260 uS. Корректное значение выхода АЦП гарантируется только для тактовых частот не выходящих из приведенного диапазона. Для генерации тактовой частоты АЦП из тактовой частоты процессора выше 100 кГц используются биты
ADPS0-ADPS2. Предварительный делитель начинает счет в момент разрешения АЦП установкой бита ADEN в ADCSR. Предварительный делитель продолжает работать до тех пор, пока установлен бит ADEN и непрерывно сбрасывается если бит
ADEN сброшен. Функция подавления шумов АЦП Одна из особенностей АЦП - функция подавления шумов, АЦП может осуществлять преобразования в режиме холостого хода, это позволят уменьшить шумы, наводимые ядром процессора.
Чтобы воспользоваться этой возможностью, необходимо произвести следующую процедуру:
1. Удостоверьтесь, что АЦП разрешен и не занят преобразованием. Необходимо выбрать режим одиночного преобразования и разрешить прерывания по окончанию преобразования .
ADEN=1
ADSC=0
ADFR=0
ADIE=1
2. Перейти в режим холостого хода. АЦП начнет преобразование после того как остановится процессор.
3. Если за время преобразования не произойдут другие прерывания, по окончанию преобразования процессор выйдет из режима холостого хода и выполнит прерывание по окончанию преобразования.
РЕГИСТР УПРАВЛЕНИЯ МУЛЬТИПЛЕКСОРОМ АЦП – AMUX
7 6 5 4 3 2 1 0
07h(27h)
- ADCBG - - - MUX2 MUX1 MUX0
RW R R RW RW RW RW RW
Начальное0 0 0 0 0 1 0 0
значение
Бит 7 - зарезервирован; в AT90S2333/4433 этот бит зарезервирован и при записи должен устанавливаться в 0.
Бит 6 - ADCBG - выбор опорного напряжения АЦП - при установке этого бита на вход АЦП подается фиксированное напряжение 1.22+-0.05В, когда бит сброшен, вход АЦП подключается к одному из внешних входов согласно установке битов
MUX2..MUX0.
Биты 5..3 - зарезервированы. В AT90S2333/4433 эти биты зарезервированы и при записи должны устанавливаться в 0.
Биты 2..0 - MUX2..MUX0 - выбор аналогового входа. Содержимое этих бит определяет какой из аналоговых входов подключен на вход АЦП.
РЕГИСТР УПРАВЛЕНИЯ И СОСТОЯНИЯ АЦП – ADCSR
ADCSR
7 6 5 4 3 2 1 0
06h(26h)
ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 1 0 0
значение
Бит 7 - ADEN - Разрешение АЦП. - При записи логической "1" в этот бит разрешается работа АЦП. При установке бита в "0" АЦП выключается. При выключении АЦП до окончания преобразования, преобразование не завершается.
Бит 6 - ADSC - Запуск преобразования АЦП. - В режиме одиночного преобразования для запуска преобразования в этот бит должна быть записана
"1". При запуске преобразования битом ADSC время преобразования отчитывается ль начала следующего периода частоты на выходе делителя. При установке ADSC после разрешения АЦП или при одновременном разрешении АЦП и установке ADSC, первому преобразованию предшествует "пустой" цикл преобразования. Во время этого цикла происходит инициализация АЦП. Во время преобразования бит ADSC остается установленным и сбрасывается при завершении преобразования, но до того, как результат переписывается в регистр данных АЦП. Это позволяет запустить новое преобразование до того как завершится текущее. Новое преобразование будет запущено сразу по окончанию текущего. Если преобразованию предшествует "пустой" цикл, бит
ADSC остается установленным пока не будет завершено реальное преобразование. Запись 0 в этот бит не дает результата.
Бит 5 - ADFR - Выбор непрерывного преобразования АЦП. - Когда этот бит установлен, включается режим непрерывного преобразования АЦП. В этом режиме
АЦП непрерывно производит выборки сигнала и обновляет регистр данных. При сбросе этого бита режим непрерывного преобразования отключается.
Бит 4 - ADIF - Флаг прерывания АЦП. - Этот флаг устанавливается когда завершается цикл преобразования АЦП и обновляется регистр данных АЦП. Если установлены флаг глобального разрешения прерываний (I в
SREG) и бит ADIE, по завершению преобразования выполняется прерывание.
Флаг ADIF сбрасывается аппаратно при выполнении соответствующего прерывания. Другой способ сбросить флаг - записать в него "1". Необходимо предостеречь, что при чтении-модификации-записи ADCSR может быть запрещено отложенное прерывание. Это же касается и команд SBI и CBI.
Бит 3 - ADIE - Разрешение прерывания от АЦП. - При установке этого бита и бита I в регистре SREG разрешены прерывания по окончанию преобразования
АЦП.
Биты 2..0 - ADPS2..ADPS0 - биты установки предварительного делителя. - Эти биты задают коэффициент деления тактовой частоты процессора и задают тактовую частоту работы АЦП.
Таблица 20. Выбор коэффициента деления АЦП
ADPSADPSADPSКоэф.делеADPS2ADPSADPS0Коэф.делени
2 1 0 ния 1 я
0 0 0 2 1 0 0 16
0 0 1 2 1 0 1 32
0 1 0 4 1 1 0 64
0 1 1 8 1 1 1 128
РЕГИСТР ДАННЫХ АЦП - ADCL И ADCH
ADCH
7 6 5 4 3 2 1 0
05h(25h)
- - - - - MSB
R R R R R R R R
Начальное0 0 0 0 0 0 0 0
значение
ADCL
7 6 5 4 3 2 1 0
04h(24h)
LSB
R R R R R R R R
Начальное0 0 0 0 0 1 0 0
значение
Сканирование аналоговых каналов
Поскольку смена аналоговых каналов всегда происходит после завершения преобразования, для переключения каналов преобразователя можно использовать режим непрерывного преобразования. Обычно для переключения каналов используется прерывание по завершению преобразования. Однако пользователь должен принимать во внимание следующие факторы:
- в режиме непрерывного преобразования, цикл выборки-хранения следующего преобразования начинается через полтора тактовых цикла после того как результат текущего преобразования записывается в регистр данных
АЦП и устанавливается флаг ADIF. Если канал АЦП переключится до того как произойдет операция выборки-хранения, результат преобразования будет отражать новое состояние мультиплексора, если ADMUX изменится после выборки- хранения, следующий результат будет использовать прежнее значение входного канала. Новый подключенный канал будет обслужен в следующем цикле преобразования. При чтении регистра ADMUX всегда возвращается последнее записанное в него число, независимо от того, какой канал используется для текущего преобразования.
Техника подавления шума АЦП
Цифровые схемы внутри и снаружи AT90S2333/4433 генерируют электромагнитные излучения, которые могут повлиять на точность аналоговых измерений. Если точность преобразования важна, уровень ума может быть понижен при помощи следующей техники:
1. Аналоговая часть процессора и все аналоговые компоненты устройства должны иметь отдельно разведенную на печатной плате землю. Аналоговая земля должна соединяться с цифровой только в одной точке печатной платы.
2. Путь прохождения аналогового сигнала должен быть коротким насколько можно. Старайтесь отделять аналоговые дорожки от цифровых аналоговой землей и проводить их как можно дальше от высокоскоростных цифровых сигналов.
3. Вывод AVcc должен подключаться к источнику Vcc через RC цепочку, как показано на рисунке:
4. Для уменьшения шума наводимого процессором используйте функцию подавления шума.
5. Если какие-то выводы порта С используются для вывода цифровых сигналов, они не должны переключаться во время преобразования.
ХАРАКТЕРИСТИКИ АЦП (T=-40...+85 град.)
Разрешение 10 бит
Интегральная нелинейность (Vref>2V), 0.2(тип),0.5(макс) ед.мл.разр.
Дифференц. нелинейность (Vref>2V), 0.2(тип),0.5(макс) ед.мл.разр.
Ошибка нуля (смещение) 1(тип) ед.мл.разр.
Время преобразования 65...260 мкС
Тактовая частота 50...200 кГц
Напряжение AVcc Vcc+-0.3В (не больше 6В)
Опорное напряжение Agnd...AVcc
Вх.сопр. по вх. опорн. напр. 6..10(тип)..13 кОм
Вх сопр. аналог. входа 100 (тип) МОм
ПОРТЫ ВВОДА/ВЫВОДА
Порт B
Порт B 6-разрядный двунаправленный порт ввода/вывода.
Для обслуживания порта отведено три регистра: регистр данных PORTB (18h,
38h), регистр направления данных - DDRB (17h, 37h) и ножки порта B - PINB
(16h, 36h). Адрес ножек порта B предназначен только для чтения, в то время как регистр данных и регистр направления данных - для чтения/записи.
Все выводы порта имеют отдельно подключаемые подтягивающие резисторы.
Выходы порта B могут поглощать ток до 20 mA и непосредственно управлять светодиодными индикаторами. Если выводы PB0..PB5 используются как входы и замыкаются на землю, если включены внутренние подтягивающие резисторы, выводы являются источниками тока (Iil). Дополнительные функции выводов порта B приведены в таблице 20.
Таблица 21. Альтернативные функции выводов порта B
ВыводАльтернативная функция
PB0 ICP (Вход захвата таймера/счетчика
1)
PB1 OC1 (Выход совпадения
таймера,счетчика 1)
PB2 SS (Выбор ведомого шины SPI)
PB3 MOSI (Выход ведущего/ вход ведомого
шины SPI)
PB4 MISO (Вход ведущего/ выход ведомого
шины SPI)
PB5 SCK (Тактовые импульсы шины SPI)

При использовании альтернативных функций выводов. регистры DDRB и PORTB должны быть установлены в соответствии с описанием альтернативных функций.
РЕГИСТР ДАННЫХ ПОРТА B
PORTB
- - DDB5 DDB0
RW RW RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
ВЫВОДЫ ПОРТА B
PINB
7 6 5 4 3 2 1 0
16h(36h)
- - PINB5 PINBO
R R RW RW RW RW RW RW
Начальное0 0 Z Z Z Z Z Z
значение

PINB не является регистром, по этому адресу осуществляется доступ к физическим значениям каждого из выводов порта B. При чтении PORTB, читаются данные из регистра-защелки, при чтении PINB читаются логические значения присутствующие на выводах порта.
ПОРТ B, КАК ПОРТ ВВОДА/ВЫВОДА ОБЩЕГО НАЗНАЧЕНИЯ
Все 6 бит порта B при использовании для ввода/вывода одинаковы.
Бит DDBn регистра DDRB выбирает направление передачи данных. Если бит установлен (1), вывод сконфигурирован как выход. Если бит сброшен (0) - вывод сконфигурирован как вход. Если PORTBn установлен и вывод сконфигурирован как вход, включается КМОП подтягивающий резистор. Для отключения резистора, PORTBn должен быть сброшен (0) или вывод должен быть сконфигурирован как выход.
Таблица 22. Влияние DDBn на выводы порта B
DDBnPORTBВх/ВыхПодт.реКомментарий
n зист
0 0 Вход Нет
0 1 Вход Да PBn источник тока Iil, если извне
соединен с землей
1 0 Выход Нет Выход установлен в 0
1 1 Выход Нет Выход установлен в 1
n = 5...0 - номер вывода
АЛЬТЕРНАТИВНЫЕ ФУНКЦИИ PORTB
SCK - PORTB, Bit 5 - Выход тактовой частоты ведущего и тактовый вход ведомого процессора канала SPI. Если работа SPI разрешена и шина сконфигурирована как ведомая, этот вывод устанавливается на ввод независимо от установки DDB5. Если процессор работает как ведущий, направление передачи данных по этому выводу определяется DDB5. Когда вывод устанавливается на ввод, подключение подтягивающего резистора состоянием бита PORTB5. Подробнее см. описание порта SPI.
MISO - PORTB, Bit 4 - Вход данных ведущего, выход ведомого в канале SPI.
Если разрешена работа SPI в качестве ведущего, вывод PB4 сконфигурирован как вход независимо от установки DDB4. Если SPI разрешен и работает как ведомый, направление передачи данных управляется состоянием DDB4. Когда вывод принудительно сконфигурирован как вход, подключение подтягивающего резистора по-прежнему управляется состоянием бита PORTB4. Подробнее см. описание порта SPI.
MOSI - PORTB, Bit 3 - Выход данных ведущего, вход ведомого в канале SPI.
Когда SPI работает как ведомый, этот вывод работает как вход независимо от установки бита DDB3. При работе SPI ведомым направление передачи этого вывода управляется битом DDB3. Когда вывод принудительно сконфигурирован как вход, подключение подтягивающего резистора по прежнему управляется состоянием бита PORTB3. Подробнее см. описание порта SPI.
SS - PORTB, Bit 2. - Вход выбора ведомого. Если канал работает как ведомый, этот вывод работает как вход независимо то установки DDB2.
SPI активируется как ведомый при переводе этого вывода в низкое состояние.
При работе SPI как ведущего, направление передачи данных через этот вывод управляется битом DDB2. Когда вывод переводится в состояние ввода, подключение подтягивающего резистора управляется битом PORTB2. Подробнее см. описание порта SPI.
OC1 - PORTB, Bit 1. Выход совпадения. Вывод PB1 может работать как внешний выход совпадения таймера/счетчика 1. Для обслуживания этой функции вывод должен быть сконфигурирован как выход (DDB1=1). Разрешение работы этой функции рассмотрено при описании таймера. Вывод OC1 также работает как выход при работе таймера в режиме ШИМ.
ICP - PORTB, Bit 0. Вход захвата. Вывод PB0 может работать как внешний вход захвата Таймера/счетчика 1. Для обслуживания этой функции вывод должен быть сконфигурирован как вход. Подробнее см. описание работы таймера.
Порт C
Порт C 6-разрядный двунаправленный порт ввода/вывода.
Для обслуживания порта отведено три регистра: регистр данных PORTC (15h,
35h), регистр направления данных - DDRC (14h, 34h) и ножки порта C - PINC
(13h, 33h). Адрес ножек порта C предназначен только для чтения, в то время как регистр данных и регистр направления данных - для чтения/записи. Все выводы порта имеют отдельно подключаемые подтягивающие резисторы. Выходы порта C могут поглощать ток до 20 mA и непосредственно управлять светодиодными индикаторами. Если выводы PC0..PC5 используются как входы и замыкаются на землю, если включены внутренние подтягивающие резисторы, выводы являются источниками тока (Iil). Дополнительные функции порта C - аналоговые входы АЦП. Если некоторые из выводов порта сконфигурированы как выходы, во время преобразования не рекомендуется производить их переключение. В экономичном режиме триггеры Шмитта отключаются от цифровых входов. Это позволяет удерживать на входах аналоговое напряжение Vcc/2 без заметного увеличения потребления.
РЕГИСТР ДАННЫХ ПОРТА C – PORTC

7 6 5 4 3 2 1 0
15h(35h)
- - PORTC5 PORTC0
R R RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
РЕГИСТР НАПРАВЛЕНИЯ ДАННЫХ ПОРТА B
DDRC
7 6 5 4 3 2 1 0
14h(34h)
- - DDC5 DDC0
R R RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
ВЫВОДЫ ПОРТА B
PINC
7 6 5 4 3 2 1 0
13h(33h)
- - PINC5 PINC0
R R RW RW RW RW RW RW
Начальное0 0 Z Z Z Z Z Z
значение

PINC не является регистром, по этому адресу осуществляется доступ к физическим значениям каждого из выводов порта C. При чтении PORTC, читаются данные из регистра-защелки, при чтении PINC читаются логические значения присутствующие на выводах порта.
ПОРТ C, КАК ПОРТ ВВОДА/ВЫВОДА ОБЩЕГО НАЗНАЧЕНИЯ
Все 6 бит порта C при использовании для ввода/вывода одинаковы.
Бит DDCn регистра DDRC выбирает направление передачи данных. Если бит установлен (1), вывод сконфигурирован как выход. Если бит сброшен (0) - вывод сконфигурирован как вход. Если PORTCn установлен и вывод сконфигурирован как вход, включается КМОП подтягивающий резистор. Для отключения резистора, PORTCn должен быть сброшен (0) или вывод должен быть сконфигурирован как выход.
Таблица 23. Влияние DDCn на выводы порта C
DDC PORTC InOПодтягивающие описание
ut резисторы
0 0 0 Нет Третье состояние
0 1 1 Да PBn источник тока Iil, если извне
соединен с землей
1 0 0 Нет Выход установлен в 0
1 1 1 Нет Выход установлен в 1
Порт D
Порт D 8-разрядный двунаправленный порт ввода/вывода.
Для обслуживания порта отведено три регистра: регистр данных PORTD (12h,
32h), регистр направления данных - DDRD (11h, 31h) и ножки порта D - PIND
(10h, 30h). Адрес ножек порта D предназначен только для чтения, в то время как регистр данных и регистр направления данных - для чтения/записи. Все выводы порта имеют отдельно подключаемые подтягивающие резисторы. Выходы порта D могут поглощать ток до 20 mA и непосредственно управлять светодиодными индикаторами. Если выводы PD0..PD7 используются как входы и замыкаются на землю, если включены внутренние подтягивающие резисторы, выводы являются источниками тока (Iil). Альтернативные функции порта приведены в таблице.
Таблица 24. Альтернативные функции порта D
Вывод Альтернативная функция
порта
PD0 RXD (вход данных UART)
PD1 TXD (выход данных UART)
PD2 INT0 (вход внешнего прерывания 0)
PD3 INT1 (вход внешнего прерывания 1)
PD4 T0 (внешний вход таймера счетчика 0)
PD5 T1 (внешний вход таймера счетчика 1)
PD6 AIN0 (неинвертирующ.вход компаратора)
PD7 AIN1 (инвертирующий вход компаратора)
РЕГИСТР ДАННЫХ ПОРТА D – PORTD

7 6 5 4 3 2 1 0
15h(35h)
- - PORTD5 PORTD0
R R RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
7 6 5 4 3 2 1 0
14h(34h)
- - DDD5 DDD0
R R RW RW RW RW RW RW
Начальное0 0 0 0 0 0 0 0
значение
7 6 5 4 3 2 1 0
13h(33h)
- - PIND5 PIND0
R R RW RW RW RW RW RW
Начальное0 0 Z Z Z Z Z Z
значение
PIND не является регистром, по этому адресу осуществляется доступ к физическим значениям каждого из выводов порта D. При чтении PORTD, читаются данные из регистра-защелки, при чтении PIND читаются логические значения присутствующие на выводах порта.
ПОРТ D, КАК ПОРТ ВВОДА/ВЫВОДА ОБЩЕГО НАЗНАЧЕНИЯ
Бит DDDn регистра DDRD выбирает направление передачи данных. Если бит установлен (1), вывод сконфигурирован как выход. Если бит сброшен (0) - вывод сконфигурирован как вход. Если PORTDn установлен и вывод сконфигурирован как вход, включается КМОП подтягивающий резистор. Для отключения резистора, PORTDn должен быть сброшен (0) или вывод должен быть сконфигурирован как выход.
Таблица 25. Влияние DDDn на выводы порта D
DDDn PORTDnInOuПодтягивающие Описание
t резисторы
0 0 Вход Нет Третье состояние
0 1 Вход Да PDn источник тока Iil, если извне
соединен с землей
1 0 ВыходНет Выход установлен в 0
1 1 ВыходНет Выход установлен в 1
Альтернативные функции порта D
AIN1 - Порт D, бит7 - инвертирующий вход аналогового компаратора. Если вывод сконфигурирован как вход (DDD7=0) и отключен внутренний подтягивающий резистор, этот вывод может работать как инвертирующий вход аналогового компаратора. В экономичном режиме триггер Шмитта отключен от цифрового входа. Это позволяет удерживать на входе напряжение близкое к Vcc/2 без заметного увеличения потребления.
AIN0 - Порт D, бит6 - неинвертирующий вход аналогового компаратора. Если вывод сконфигурирован как вход (DDD6=0) и отключен внутренний подтягивающий резистор, этот вывод может работать как инвертирующий вход аналогового компаратора. В экономичном режиме триггер Шмитта отключен от цифрового входа. Это позволяет удерживать на входе напряжение близкое к Vcc/2 без заметного увеличения потребления.
T1 - Порт D, бит 5 - тактовый вход таймера/счетчика 1. Подробнее см. описание таймера.
T0 - Порт D, бит 4 - тактовый вход таймера/счетчика 0. Подробнее см. описание таймера.
INT1 - Порт D, бит 3 - вход внешних прерываний 1. Подробнее см. описание прерываний.
INT0 - Порт D, бит 2 - вход внешних прерываний 0. Подробнее см. описание прерываний.
TXD - Порт D, бит 1 - выход передатчика UART. Если разрешена работа передатчика UART, независимо от состояния DDRD1 этот вывод сконфигурирован как выход.
RXD - Порт D, бит 0 - выход приемника UART. Если разрешена работа приемника
UART, независимо от состояния DDRD0 этот вывод сконфигурирован как выход.
Когда UART использует вывод для приема данных, единица в PORTD0 подключает встроенный подтягивающий резистор.
ПРОГРАММИРОВАНИЕ ПАМЯТИ
Программирование битов блокировки памяти
Микроконтроллер имеет два бита блокировки, которые могут быть оставлены незапрограммированными (1) или программироваться (0), при этом достигаются свойства приведенные в таблице 20.
Таблица 26. Режимы защиты и биты блокировки
Биты Тип защиты
блокировки
РежиLB1LB2описание
м
1 1 1 защита не установлена
2 0 1 дальнейшее программирование флэш памяти и EEPROM
запрещено
3 0 0 как режим 2, но запрещено и чтение
Примечание: биты блокировки стираются только при полном стирании памяти
Биты конфигурации (Fuse bits)
В AT90S2333/4433 предусмотрены шесть бит конфигурации - SPIEN, BODLEVEL,
BODEN, и CKSEL[2:0].
Когда запрограммирован бит SPIEN (0) разрешен режим последовательного программирования. По умолчанию бит запрограммирован
(0). В режиме последовательного программирования этот бит недоступен.
BODLEVEL. Задает уровень срабатывания схемы сброса по пропаданию питания.
Если бит незапрограммирован (1), этот уровень - 2.7В, для запрограммированного бита - 4В. По умолчанию бит незапрограммирован.
BODEN. Когда этот бит запрограммирован (0), разрешен сброс по пропаданию питания. По умолчанию бит незапрограммирован.
CKSEL[2:0]. В таблице 4 приведены значения задержки при сбросе на которые влияют эти биты. По умолчанию биты установлены в 010 - 64mS+16K CK.
Код устройства
Все микроконтроллеры фирмы Atmel имеют 3-байтовый сигнатурный код, по которому идентифицируется устройство. Этот код может быть прочитан в параллельном и последовательном режимах. Эти три байта размещены в отдельном адресном пространстве и для AT90S4433 имеют следующие значения:
1. $000: $1E - код производителя - Atmel
2. $001: $92 - 4 кБ флэш памяти
3. $002: $01 - при $01=$92 - м/сх AT90S4433 для AT90S2333:
1. $000: $1E - код производителя - Atmel
2. $001: $91 - 2 кБ флэш памяти
3. $002: $05 - при $01=$92 - м/сх AT90S2333
Программирование флэш памяти и EEPROM
AT90S2333/4433 имеют 2кБ или 4кБ перепрограммируемой флэш памяти программ и
256 байт энергонезависимой памяти данных.
При поставке флэш память и память данных стерты (содержат FFh) и готовы к программированию. Микросхемы поддерживают высоковольтный (12В) параллельный режим программирования и низковольтный режим последовательного программирования. Напряжение +12В используется только для разрешения программирования, этот вывод почти не потребляет тока. Последовательный режим программирования предусмотрен для загрузки программы и данных в системе пользователя (внутрисистемное программирование). В обоих режимах программирования память программ и данных программируется байт за байтом.
Для программирования EEPROM предусмотрен цикл автоматического стирания при программировании в последовательном режиме.
Параллельное программирование.
Ниже рассмотрено параллельное программирование флэш памяти программ, энергонезависимой памяти данных, битов блокировки и конфигурации. Некоторые выводы процессоров ниже называются именами, отражающими функциональное назначение сигналов при параллельном программировании. Выводы не приведенные в следующей таблице называются своими обычными именами.
Таблица 27. Имена выводов
Имя сигнала Имя Вх/ВыхФункция
при вывод
программирована
.
RDY/BSY PD1 Вых 0: мкросхема занята
программированием
1: мкросхема готова к приему
команды
OE PD2 Вх Разрешение выходов (активный
0)
WR PD3 Вх Импульс записи (активный 0)
BS PD4 Вх Выбор байта
XA0 PD5 Вх Действие XTAL бит 0
XA1 PD6 Вх Действие XTAL бит 1
Биты XA0 и XA1 определяют действие происходящее по положительному импульсу
XTAL1. Установки битов приведены в следующей таблице:
Таблица 28. Установка XA1 и XA0
XAXAДействие при подаче импульса XTAL1
1 0
0 0 Загрузка адреса памяти программ или данных
(старший/младший байт задается выводом BS
0 1 Загрузка данных (старший/младший байт для флэш памяти
задается выводом BS)
1 0 Загрузка команды
1 1 Не работает, холостой ход
По импульсу WR или OE загружается команда определяющая действие по вводу или выводу. В байте команды каждому биту присвоена функция, как показано в таблице 29.
Таблица 29. Биты конфигурации командного байта
БитЗначение при установке
7 Стирание кристалла
6 Запись битов конфигурации, расположенных в следующих позициях байта данных:
D5-SPIEN, D4-BODLEVEL, D3-BODEN, D2-D0-CKSEL (0 для программирования, 1 для
стирания)
5 Запись битов блокировки, расположенных в следующих позициях байта данных: D2
- LB2, D1 - LB1
(для программирования устанавливать 0)
4 Запись памяти программ или данных (определяется битом 0)
3 Чтение сигнатуры
2 Чтение битов блокировки и конфигурации, расположенных в следующих позициях
байта данных: D5-SPIEN, D4-BODLEVEL, D3-BODEN, D2-D0 -CKSEL (для BS=1) или
D2-LB2, D1-LB1 (для BS=0)
1 Чтение памяти программ или данных (определяется битом 0)
0 доступ к памяти программ, 1 к памяти данных
ВХОД В РЕЖИМ ПРОГРАММИРОВАНИЯ
Следующий алгоритм переводит устройство в режим параллельного программирования:
1. Подать напряжение 4.5...5.5В на выводы питания.
2. Установить RESET и BS в 0 и выдержать не меньше 100 нС.
3. Подать 12В на RESET и выждать не менее 100 нС перед изменением
BS. Любая активность на выводе BS в течение этого времени приведет к тому, что микросхема не включится в режим программирования.
СТИРАНИЕ КРИСТАЛЛА
При стирании кристалла стираются память программ и данных, а также биты блокировки. Биты блокировки не сбрасываются до полного стирания памяти программ и данных. Биты конфигурации не изменяются. (Стирание кристалла производится перед его программированием).
Загрузка команды "стереть кристалл"
1. Установить XA1,XA0 в '10'. Это разрешает загрузку команды.
2. Установить BS в 0
3. Установить PC(1..0) PB(5..0) в '1000 0000'. Это команда стирания кристалла.
4. Подать положительный импульс на XTAL1. При этом загружается команда и начинается стирание памяти программ и данных. После импульса
XTAL1, подать отрицательный импульс на WR, чтобы разрешить стирание битов блокировки по окончанию цикла стирания. Подождать около 10 мС до окончания цикла стирания. Стирание кристалла не генерирует сигнала RDY/BSY.
ПРОГРАММИРОВАНИЕ ФЛЭШ ПАМЯТИ
Загрузить команду "программирование флэш памяти"
1. Установить XA1,XA0 в '10'. Это разрешает загрузку команды.
2. Установить BS в 0
3. Установить PC(1..0) PB(5..0) в '0001 0000'. Это команда программирования флэш памяти
4. Подать положительный импульс на XTAL1. При этом загружается команда.
Загрузить младший байт адреса
1. Установить XA1,XA0 в '00'. Это разрешает загрузку адреса.
2. Установить BS в 0. Это выбирает младший байт адреса.
3. Установить на PC(1..0) PB(5..0) младший байт адреса.
4. Подать положительный импульс на XTAL1. При этом загружается младший байт адреса.
Загрузить старший байт адреса
1. Установить XA1,XA0 в '00'. Это разрешает загрузку адреса.
2. Установить BS в 1. Это выбирает старший байт адреса.
3. Установить на PC(1..0) PB(5..0) старший байт адреса. ($00..$01)
4. Подать положительный импульс на XTAL1. При этом загружается старший байт адреса.
Загрузить байт данных
1. Установить XA1,XA0 в '01'. Это разрешает загрузку данных.
2. Установить на PC(1..0) PB(5..0) младший байт данных.
3. Подать положительный импульс на XTAL1. При этом загружается младший байт данных.
Запись младшего байта данных.
1. Установить BS в '0'. Это выбирает младший байт данных
2. Подать на WR отрицательный импульс. Это инициирует программирование байта. RDY/BSY переходит в низкое состояние.
3. Перед программированием следующего байта подождать, пока RDY/BSY перейдет в высокое состояние.
Загрузить байт данных
1. Установить XA1,XA0 в '01'. Это разрешает загрузку данных.
2. Установить на PC(1..0) PB(5..0) старший байт данных.
3. Подать положительный импульс на XTAL1. При этом загружается старший байт данных.
Запись старшего байта данных.
1. Установить BS в '1'. Это выбирает старший байт данных
2. Подать на WR отрицательный импульс. Это инициирует программирование байта. RDY/BSY переходит в низкое состояние.
3. Перед программированием следующего байта подождать, пока RDY/BSY перейдет в высокое состояние.
Загруженные адрес и данные сохраняются в устройстве после программирования, при этом процесс программирования упрощается.
* Команду программирования флэш памяти необходимо подать только перед программированием первого байта
* Старший байт адреса можно менять только перед программированием следующей страницы памяти программ (256 слов).
ПРОГРАММИРОВАНИЕ ПАМЯТИ ДАННЫХ
Алгоритм программирования памяти данных следующий (обратитесь к программированию памяти программ за описанием загрузки команды, адреса и данных):
1. Загрузить команду '0001 0001'.
2. Загрузить младший адрес памяти данных (00h - 7Fh/FFh).
3. Загрузить младший байт данных
4. Подать отрицательный импульс на WR и подождать перевода RDY/BSY в 1.
Загрузка команды необходима только перед программированием первого байта.
ЧТЕНИЕ ПАМЯТИ ПРОГРАММ
Алгоритм чтения флэш памяти следующий (обратитесь к программированию памяти программ за описанием загрузки команды, адреса и данных):
1. Загрузить команду '0000 0010'
2. Загрузить младший байт адреса ($00 - $FF)
3. Загрузить старший байт адреса ($00 - $03/$07)
4. Установить OE в '0', BS в '0'. Теперь на выводах PC(1..0) PB(5..0) можно прочитать байт данных.
5. Установить BS в '1'. Теперь на выводах PB можно прочитать старший байт данных.
6. Установить OE в '1'.
Загрузка команды необходима только перед чтением первого байта.
ЧТЕНИЕ ПАМЯТИ ДАННЫХ
Алгоритм чтения памяти данных следующий (обратитесь к программированию памяти программ за описанием загрузки команды, адреса и данных):
1. Загрузить команду '0000 0011'
2. Загрузить младший байт адреса (00h - 7Fh)
3. Установить OE в '0', BS в '0'. Теперь на выводах PC(1..0) PB(5..0) можно прочитать байт данных.
4. Установить OE в '1'.
Загрузка команды необходима только перед чтением первого байта.
ПРОГРАММИРОВАНИЕ БИТОВ КОНФИГУРАЦИИ
Алгоритм программирования битов конфигурации следующий (обратитесь к программированию памяти программ за описанием загрузки команды, адреса и данных):
1. Загрузить команду '0100 0000'
2. Загрузить данные
Бит5=0 - программировать бит SPIEN, Бит5=1 - стереть бит SPIEN
Бит4=0 - программировать бит BODLEVEL,
Бит4=1 - стереть бит BODLEVEL
Бит3=0 - программировать бит BODEN,
Бит3=1 - стереть бит BODEN
Биты 2-0 =0 - программировать биты CKSEL,
Биты 2-0 =1 - стереть биты CKSEL
3. Подать на WR отрицательный импульс и ждать перехода RDY/BSY в единицу.
ПРОГРАММИРОВАНИЕ БИТОВ БЛОКИРОВКИ
Алгоритм программирования битов блокировки следующий (обратитесь к программированию памяти программ за описанием загрузки команды, адреса и данных):
1. Загрузить команду '0010 0000'
2. Загрузить данные
Бит2=0 - программировать бит LB2
Бит1=0 - программировать бит LB1
3. Подать на WR отрицательный импульс и ждать перехода RDY/BSY в единицу.
Биты блокировки стираются только при стирании всей микросхемы.
ЧТЕНИЕ БИТОВ КОНФИГУРАЦИИ И БЛОКИРОВКИ
Алгоритм чтения битов блокировки и конфигурации следующий (обратитесь к программированию памяти программ за описанием загрузки команды, адреса и данных):
1. Загрузить команду '0000 0100'
2. Установить OE в '0', BS в '0'. Теперь на выводах PC(1..0) PB(5..0) можно прочитать биты конфигурации.
Бит5 - SPIEN - '0' запрограммирован
Бит4 - BODLEVEL - '0' запрограммирован
Бит3 - BODEN - '0' запрограммирован
Биты 2-0 - CKSEL - '0' запрограммированы
3. Установить OE в '0', BS в '1'. Теперь на выводах PC(1..0) PB(5..0) можно прочитать биты блокировки.
Бит2 - LB2 - '0' запрограммирован
Бит1 - LB1 - '0' запрограммирован
3. Установить OE в '1'.
ЧТЕНИЕ БАЙТОВ СИГНАТУРЫ
Алгоритм чтения байтов сигнатуры следующий (обратитесь к программированию памяти программ за описанием загрузки команды, адреса и данных):
1. Загрузить команду 0000 1000
2. Загрузить младший байт адреса ($00 - $02), установить OE и BS в "0".
После этого выбранный байт сигнатуры можно прочитать на выводах PC(1..0)
PB(5..0).
3. Установить OE в "1".
Команду необходимо подавать только перед чтением первого байта.
Таблица 31. Характеристики параллельного программирования
T=21..27 ±C, Vcc=4.5-5.5V
Параметр Min Typ Max
tDVXH Задерж.между установ. данных и 67 nS
сигн.упр. и высоким уровнем XTAL1
tXHXL Ширина импульса XTAL 67 nS
tXLDH Удержание данных и сигналов 67 nS
управления
После установки XTAL1 = 1
tBVVL Удержание BS после установки 0 67 nS
WR
tWLWH Ширина импульса WR 67 nS
tWHRL Задержка между 1 и 0 ) 20 nS
WR RDY/BSY (
tXLOL Задержка между 0 и 0 67 nS
XL OE
tOLDV Задержка между 0 и установкой 20 nS
XL данных
tWLRH Задержка между 0 и 1 ) 0.5 0.7 0.9mS
WR RDY/BSY (
Примечание: если tWHRL удерживается дольше, чем tWLRH импульс на RDY/BSY не появится.
ПОСЛЕДОВАТЕЛЬНАЯ ЗАГРУЗКА
Как память программ, так и память данных могут быть запрограммированы с использованием последовательной шины SPI, при этом вывод RESET должен быть подключен к земле. Последовательный интерфейс работает с выводами SCK, MOSI
(вход) и MISO (выход). После подачи низкого уровня на RESET перед программированием/стиранием необходимо исполнить команду разрешения программирования. При программировании памяти данных, во внутренний алгоритм программирования встроен цикл стирания (только при последовательном программировании), поэтому нет необходимости в выполнении команды стирания памяти. Команда стирания микросхемы переводит все ячейки памяти программ и данных в состояние FFh. Флэш память программ и энергонезависимая память данных имеют отдельное адресное пространство: 000h
- 3FFh/7FFh для памяти программ и 000h - 07Fh/0FFh для памяти данных. При программировании необходимо подавать внешнюю тактовую частоту на вывод
XTAL1 или подключить внешний тактовый генератор к выводам XTAL1 и XTAL2.
Минимальные длительности низкого и высокого уровня сигнала SCK определены следующим образом:
Низкий: > 2 периодов XTAL1
Высокий: > 2 периодов XTAL1
ПОДТВЕРЖДЕНИЕ ДАННЫХ
До завершения программировании нового байта, при чтении из памяти будет читаться значение FFh. После того как микросхема будет готова для записи следующего байта, при чтении можно прочитать записанное значение. Это используется для определения момента, когда можно записывать следующий байт. Этот способ не будет работать для байта FFh, поэтому для записи этого числа перед программированием следующего байта придется выждать по крайней мере 4mS. Поскольку после стирания ячейки памяти устанавливаются в FFh, при программировании ячейки, содержащие FFh можно пропускать. Это не применимо при перезаписи EEPROM без стирания памяти программ. В этом случае подтверждение не работает для данных FFh, для этого значения перед программированием следующего байта необходимо выждать 4mS.
АЛГОРИТМ ПОСЛЕДОВАТЕЛЬНОГО ПРОГРАММИРОВАНИЯ
Для программирования и проверки AT90S2333/4433 в режиме последовательного программирования рекомендуется следующая последовательность действий (см. формат четырех байтовой команды в табл.32):
1. Последовательность включения питания:
Подать напряжение питания между VCC и GND, при этом RESET и SCK должны быть установлены в '0'. Если кварцевый резонатор не подключен к выводам XTAL1 и
XTAL2, подайте частоту на вывод XTAL1.(Если программатор не гарантирует установки SCK в '0' при подаче питания, после того как на SCK будет установлен '0', на RESET необходимо подать положительный импульс, и удерживать его по крайней мере два периода тактовой частоты после установки вывода SCK в "0".
2. Подождать 20 mS и разрешить последовательное программирование послав команду разрешения на вывод MOSI/PB3.
3. При посылке команды разрешения программирования, второй байт последовательности (53h) будет возвращен при посылке третьего байта. В любом случае, должны быть посланы все четыре байта команды. Если число 53h не получено обратно, подайте положительный импульс на SCK и повторите команду разрешения программирования. Если после 32 попыток не будет получено число 53h, микросхема неисправна.
4. После подачи команды стирания (всегда при программировании памяти программ), необходимо подождать 10 mS, выдать положительный импульс на
RESET и продолжить с шага 2.
5. Память программ и память данных программируются по одному байту выдачей адреса и данных в команде записи. Перед записью новых данных в EEPROM ячейки памяти перед записью новых данных автоматически стираются. Чтобы определить время, когда можно записывать следующий байт, используется подтверждение данных. При записи предварительно стертой микросхемы записывать ячейки содержащие FFh не обязательно.
6. Любую ячейку памяти можно проверить используя команду чтения, которая выдает содержимое указанной ячейки на последовательный вывод MISO/PB4.
7. По окончанию программирования вывод RESET может быть установлен в '1' для возобновления нормальной работы схемы.
8. Последовательность выключения питания (если необходимо) Установить XTAL1 в '0' (если не используется кварцевый резонатор)
Установить RESET в '1'.
Отключить питание
При записи последовательных данных в процессор данные читаются по нарастающему фронту сигнала CLK. При чтении данных из процессора данные читаются по спадающему фронту сигнала CLK.
Таблица 32. Команды последовательного программирования
Команда Формат команды Действие
Байт 1 Байт 2 Байт 3 Байт 4
Разрешение 1010 0101 xxxx xxxx Разрешен.послед.
рограммир. 1100 0011 xxxx xxxx программирования после установки
RESET в '0'
Стирание 1010 100x xxxx xxxx Стирание памяти прогр. и данных
микросх. 1100 xxxx xxxx xxxx
Чтение памяти 0010 0000 bbbb oooo Читать старший или младший байт
прогр. H000 aaaa bbbb oooo o по адресу ab
Запись памяти 0100 0000 bbbb iiii Запись старш. или младш. байта i
прогр. H000 aaaa bbbb iiii в память прогр по адресу ab
Чтение памяти 1010 0000 bbbb oooo Читать данные o по адресу ab
данных 0000 000a bbbb oooo
Запись памяти 1100 0000 bbbb iiii Запись данных i по адресу ab
данных 0000 000a bbbb iiii
Чтение битов 0101 xxxx xxxx xxxx Биты 2 и 1 равны 0 – блокировка
блокир. 1000 xxxx xxxx x21x 1 - нет блокир.
Запись битов 1010 111x xxxx xxxx Запись битов бло кировки.
блокир. 1100 x21x xxxx xxxx Установить 1,2=0 для блокировки
памяти
Читать код 0011 xxxx xxxx oooo Читать код устройства o с адреса
устройства 0000 xxxx xxbb oooo b
Запись 1010 11_1765xxxx xxxx Запись битов-перемычек.
битов-перемыч 1100 43 xxxx xxxx Установить 3,4,5,6,7 в "0" чтобы
запрограммировать
Чтение 1010 xxxx xxxx xx87 Чтение битов-перемычек.
битов-перемыч 0000 xxxx xxxx 6543 0 – запрограммир 1 - стерт
a - старшие биты адреса; b - младшие биты адреса; o - выход данных
H = '0'-младший байт, '1'-старший байт; i - вход данных; x - не использ-ся; 1 - 1-й бит блокировки; 2 - 2-й бит блокировки;
3 - CKSEL0; 4 - CKSEL1; 5 - CKSEL2; 6 - BODEN; 7 - BODLEVEL;
8 - SPIEN;
Максимально допустимые параметры
Рабочая температура
. -40±С -
+105±С
Температура хранения
-65±С -
+150±С
Напряжение на любом выводе кроме RESET
.. -1.0V - +7.0V
Максимальное рабочее напряжение
. 6.6V
Постоянный ток через вывод порта
40.0 mA
Постоянный ток между VCC и GND
...140.0 mA

ПРИМЕЧАНИЕ: выход параметров за пределы указанные в таблице может привести к нарушению работоспособности микросхемы. Это предельные значения параметров, рабочие параметры микросхемы приведены ниже. Удержание предельных значений на выводах м/сх в течение длительного времени может привести к потере работоспособности м/сх.
ХАРАКТЕРИСТИКИ ПО ПОСТОЯННОМУ ТОКУ
Ta = -40...+85±C, Vcc=2.7...6.0V (если не указано иначе)
Мин./Тип./Макс.
Входное напряжение '0' - -0.5/_/0.3Vcc V
Входное напряжение '1'(кроме XTAL1 и RESET) - 0.7Vcc/_/Vcc+0.5 V на XTAL1 и RESET - 0.7Vcc/_/Vcc+0.5 V Выходное напряжение '0'(Порты B,C,D)
Il=20mA, Vcc=5V - _/_/0.5 V
Il=10mA, Vcc=3V - _/_/0.5 V Выходное напряжение '1'(Порты B,C,D) I0h=10mA,
Vcc=5V - Vcc-0.5/_/_ V
I0h=5mA, Vcc=2.7V - Vcc-0.5/_/_ V Подтягивающий резистор сброса - 100/_/500 кОм
Подтягивающий резистор вывода порта 10/50/100 кОм
Потребляемый ток:
Активный режим, 3V, 4MHz - _/3.0/_ mA холостой ход (idle mode), 3V, 4MHz - _/750/_ uA пониженное потребление WDT включен, 3V - _/10/_ uA
WDT выключен, 3V - _/_/1 uA
Напряжение смещения аналогового компаратора Vcc=5V - _/_/20 mV
Входной ток утечки аналогового компаратора - 1/5/10 nA
Время срабатывания аналогового компаратора Vcc=2.7V - _/750/_ nS
Vcc=4.0V - _/500/_ nS
ПРИМЕЧАНИЯ:
1. В рабочем состоянии ток через выводы должен ограничиваться следующими условиями:
- Максимальный ток через вывод - 20 mA
- Максимальный ток через все выводы - 80mA
При превышении выходного тока выше указанных пределов, напряжение на выходе может отличаться от приведенного выше. Поглощение выводами тока больше приведенного не гарантируется.
2. Минимальное напряжение для режима пониженного потребления - 2V
ПАРАМЕТРЫ ВНЕШНЕГО ТАКТОВОГО СИГНАЛА
Параметр Vcc=2.7...6.0 VVcc=4.0...6.0 Ед
V .
min max min max
Частота 0 4 0 8 MH
z
Период 250 125 nS
Длительность '1' 115 58.3 nS
Длительность '0' 115 58.3 nS
Длительность 10 4.15 nS
фронта
Список регистров.
36h (56h) ЗАРЕЗЕРВИРОВАН
31h (51h) ЗАРЕЗЕРВИРОВАН
30h (50h) ЗАРЕЗЕРВИРОВАН
2Сh (4Сh) TCNT1L Таймер/счетчик1 младший байт
2Bh (4Bh) OCR1AH Таймер/счетчик1 регистр сравнения старший байт
2Ah (4Ah) OCR1AL Таймер/счетчик1 регистр сравнения младший байт
- ЗАРЕЗЕРВИРОВАН
27h (47h) ICR1H Таймер/счетчик1 регистр захвата старший байт
26h (46h) ICR1L Таймер/счетчик1 регистр захвата младший байт
- ЗАРЕЗЕРВИРОВАН
1Fh (3Fh) ЗАРЕЗЕРВИРОВАН
1Eh (3Eh) EEAR Регистр адреса энергонезависимой памяти
1Dh (3Dh) EEDR Регистр данных энергонезависимой памяти
- - ЗАРЕЗЕРВИРОВАН
00h (20h) - ЗАРЕЗЕРВИРОВАН
Примечание: Для совместимости с другими устройствами, зарезервированные биты при записи необходимо устанавливать в "0". Данные в зарезервированные ячейки памяти записывать нельзя.
Набор команд
МнемоникОперандОписание Действие Флаги Цкл
а ы
Арифметические команды
ADD Rd, Rr Сложить два регистра Rd

Все рефераты по радиоэлектронике

Hosted by uCoz