РЕФЕРАТЫ ПО НАУКЕ И ТЕХНИКЕ

Курсовая: Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине


Министерство общего и профессионального образования РФ
Тюменский Государственный Нефтегазовый Университет
Кафедра РЭНиГМ Реферат
«Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине» Выполнил студент
Группы НГР-96-1
Принял профессор
Телков А. П.
Тюмень 1999 г.
       Рассмотрим функция (F) которая есть функ­ция пяти параметров F=F (f0, rc, h, x, t*), каждый из которых — безразмерная ве­личина, соответственно равная
                                            (1)
где       r — радиус наблюдения;
x — коэффициент пьезопроводности;
Т — полное время наблюдения;
h — мощность пласта;
b — мощность вскрытого пласта;
z — координата;
t — текущее время.
Названная функция может быть ис­пользована для определения понижения (повышения) давления на забое скважи­ны после ее пуска (остановки), а также для анализа распределения потенциала (давления) в пласте во время работы скважины.
Уравнение, описывающее изменение давления на забое, т. е. при x=h; r=rc или r=rc, имеет вид
                                                              (2)
где безразмерное значение депрессии связано с размерным следующим соот­ношением
где                                                    (3)
здесь Q — дебит;
m — коэффициент вязкости;
k — коэффициент проницаемости.
Аналитическое выражение F для оп­ределения изменения давления на за­бое скважины запишем в виде
  (4)
Уравнение (2) в приведенном виде не может использоваться для решения инженерных задач по следующим при­чинам: во-первых, функция (4) сложна и требует табулирования; во-вторых, вид функции исключает  возможность выделить время в качестве слагаемого и свести решение уравнения (2) к урав­нению прямой для интерпретации кри­вых восстановления (понижения) давле­ния в скважинах традиционными мето­дами. Чтобы избежать этого, можно по­ступить следующим образом.
В нефтепромысловом деле при гид­родинамических исследованиях скважин широко используется интегрально-пока­зательная функция. Несовершенство по степени вскрытия пласта в этом случае учитывается введением дополнительных фильтрационных сопротивлений (C1), взятых из решения задач для установившегося притока. В соответствии с этим уравнение притока записывается в виде
                                                            (5)
Как видно, дополнительные фильтрационные сопротивления являются функ­цией геометрии пласта. Насколько вер­но допущение о возможности использо­вания значений C1(rс, h), пока еще ни теоретически, ни экспериментально не доказано.
Для неустановившегося притока урав­нение (2) запишем аналогично в виде двух слагаемых, где в отличие от вы­ражения (5) значения фильтрационных сопротивлений являются функцией трех параметров (rс, h, f0)
                                           (6)
Как _ видим, дополнительное слагае­мое R(rc , h, f0) в уравнении (6) зависит не только от геометрии пласта, но и от параметра Фурье (f0). В дальнейшем бу­дем называть это слагаемое функцией фильтрационного сопротивления. Заме­тим, что при h=l (скважина совершен­ная по степени вскрытия) уравнение (2) представляет собой интегрально-по­казательную функцию
                                                               (7)
С учетом равенства (7) решение (6) за­пишем в виде
                           (8)
Разрешая уравнение (8) относительно функции сопротивления и   учитывая уравнение (2), находим
                     (9)
и на основании равенства (7) приведем выражение (9) к виду
 (10)
Численное значение R(rс,h,fo) рас­считано по уравнению (10) на ЭВМ в широком диапазоне изменения парамет­ров rc, h, f0. Интеграл (2) вычислялся методом Гаусса, оценка его сходимости выполнена согласно работе [3]. С уче­том равенства (7) вычисления дополнительно проконтролированы по значени­ям интегрально-показательной функции.
С целью выяснения поведения депрессии и функции сопротивления проана­лизируем их зависимость от значений безразмерных параметров.
1. Определим поведение Dр в зави­симости от значений параметров  rс, h, f0.
Результаты  расчетов значений де­прессии для каждого фиксированного rc сведены в таблицы, каждая из кото­рых представляет собой матрицу разме­ром 10х15. Элементы матрицы это зна­чения депрессии Dp(rc) для фиксиро­ванных h и f0. Матрица построена та­ким образом, что каждый ее столбец есть численное значение депрессии в зависимости от h, .а каждая строка со­ответствует численному значению де­прессии в зависимости от fo (табл. 1). Таким образом,  осуществлен переход от значений безразмерной депрессии Dp(rc, h, f0) к относительной депрессии
Dр*i,j (rc).
Для удобства построения и иллюст­рации графических зависимостей выпол­нена нормировка матрицы. С этой це­лью каждый элемент i-й строки матри­цы поделен на максимальное значение депрессии в данной строке, что соответ­ствует значению j==15. Тогда элементы новой матрицы определятся выраже­нием
                                                                      (11)
Условимся элементы матрицы назы­вать значениями относительной депрес­сии. На рис. 1 приведен график изме­нения относительной депрессии при фик­сированных значениях h. Характер по­ведения относительной депрессии поз­воляет описать  графики уравнением пучка прямых
0,01 показывает, что графики этой зависимости можно описать уравнением пучка прямых для любого значения h. Для rc

Все рефераты по науке и технике

Hosted by uCoz