РЕФЕРАТЫ ПО НАУКЕ И ТЕХНИКЕРеферат: Современная судовая газотурбинная установкаСовременная судовая газотурбинная установка СОДЕРЖАНИЕ: ВВЕДЕНИЕ2 КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ГТУ И ЕЕ ЭЛЕМЕНТОВ2 1.1 Состав ГТУ 1.1.1.ГТУ в составе судовой энергетической установки.--3 1.1.2 Газотурбинный двигатель4 1.1.3 Передача7 1.1.4 Общая компоновка ГТУ--8 1.1.4.1 Судовые ГТУ промышленного типа12 1.1.4.2 Судовые ГТУ легкого типа--13 1.2 Редукторы --16 1.3 Средства реверса-17 1.3.1 Газовый реверс -17 1.3.2 Реверсивные передачи--19 1.3.3 Винт регулируемого шага-21 1.4. Средства и посты управления21 1.5. Преимущества комбинированной установки--23 Заключение-24 ВВЕДЕНИЕ. Современная судовая газотурбинная установка (ГТУ) успешно конкурирует с аналогичными по назначению паротурбинными и дизельными. От последних она выгодно отличается компактностью и малой удельной массой, маневренностью и высокой ремонтопригодностью, лучшей приспособленностью к автоматизации и дистанционному управлению. Газотурбинная установка может использоваться как всережимная и в сочетании с дизельными и паротурбинными. При эксплуатации ГТУ чувствительна к качеству подготовки топлива и масла, к изменению внешних условий (температура, чистота и давление атмосферного воздуха), ее надежность, как ни у какой другой установки зависит от точности выполнения всех эксплуатационных инструкций, а также от своевременности и правильности решений, принимаемых обслуживающим персоналом в непредусмотренных инструкциями ситуациях. Опыт эксплуатации судовых ГТУ показал, что от инженера-механика требуется не только знание и пунктуальное выполнение требований эксплуатационной документации, но и понимание физических, химических и других процессов, протекающих в работающих двигателях. Кроме того, при длительных плаваниях инженеру-механику часто необходим справочный материал, связанный с эксплуатацией ГТУ и отсутствующий в имеющейся на судне документации. КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ГТУ И ЕЕ ЭЛЕМЕНТОВ. Судовая энергетическая установка (СЭУ) служит для сообщения хода судну, а также для обеспечения всех судовых потребителей необходимыми видами энергии (тепловой, электрической и пр.). Судовые энергетические установки классифицируются как по роду используемого топлива (с органическим и ядерным топливом), так и по типу двигателя—двигатели внутреннего сгорания (ДВС), паротурбинные установки (ПТУ) и газотурбинные (ГТУ), а также комбинированные, состоящие из двигателей различных типов. Судовые ГТУ от других типов выгодно отличаются целым рядом показателей: малыми габаритами и удельной массой, более высокой маневренностью, высокой ремонтопригодностью, лучшей приспособленностью к автоматизации и дистанционному управлению. Одновременно ГТУ несколько уступают ДВС по экономичности и требуют более тщательного ухода, как во время работы, так и при бездействии. 1.1. Состав ГТУ 1.1.1. ГТУ в составе судовой энергетической установки. В соответствии с назначением СЭУ весь комплекс ее механизмов и систем условно делят на четыре группы: — главную установку, предназначенную для обеспечения движения судна: — вспомогательную, обеспечивающую потребности судна в различных видах энергии на стоянке, при подготовке главной установки к действию и бытовые потребности судна; — электроэнергетическую, обеспечивающую судно различными видами электроэнергии; — механизмы и системы общесудового назначения. Газотурбинная установка может быть главной или се составной частью, может быть приводом электрических генераторов, различных механизмов общесудового назначения. В последних двух случаях ГТУ называют вспомогательной. Судовая энергетическая установка состоит из одного или нескольких комплексов двигатель-движитель, каждый из которых включает движитель, валопровод и одну главную установку. Главная установка в свою очередь состоит из одного или нескольких однотипных (в КУ, возможно, и разнотипных) двигателей и общей для них передачи, подводящей энергию к движителю через линию вала. Если двигатели главной установки газотурбинные, и она обеспечивает ход и маневрирование судна, ее называют газотурбинной всережимной. В комбинированной установке газотурбинная, как правило, является ускорительной (форсажной), обеспечивающей судну приращение скорости переднего хода. 1.1.2. Газотурбинный двигатель. Газотурбинный двигатель—тепловая машина, предназначенная, для преобразования энергии сгорания топлива в механическую работу на валу двигателя. Основными элементами ГТД являются компрессор, камера сгорания и газовая турбина. Т 3 Р2 2 Р1 4 0 1 S Рис.1.1. Теоретический простой цикл ГТД. Наибольшее распространение получили ГТД с непрерывным сгоранием топлива при постоянном давлении. На рис. 1.1 изображен теоретический простой цикл такого ГТД на диаграмме Т-S. Здесь 1—2— изоэнтропийный (адиабатический) процесс повышения давления воздуха в компрессоре; 2—3—изобарный подвод теплоты в КС; 3—4 — изоэнтропийный (адиабатический) процесс расширения газа в турбине; 4—1—изобарный отвод теплоты в атмосферу. Большая часть работы расширения газа в турбине расходуется на сжатие воздуха в компрессоре, остальная часть производимой турбиной ГТД работы обычно после преобразования передается к потребителю мощности и называется полезной работой. В так называемых сложных циклах ГТД, где можно получить более высокий КПД, или большую полезную работу, предусматривается либо промежуточное охлаждение воздуха (например, между компрессорами или их ступенями), либо вторичный подогрев газов (в дополнительных КС между турбинами), либо регенерация, т.е. использование теплоты выходящих из турбин газов для предварительного подогрева сжатого воздуха, либо любое возможное сочетание названных средств. Двигатели, выполненные по сложному циклу, имеют большие массы и габариты по сравнению с ГТД простого цикла, менее маневренны, менее надежны, весьма сложны. Существенный недостаток ГТД простого цикла-относительно низкая экономичность-может быть устранен согласованным увеличением степени повышения давления воздуха Лк в компрессоре ГТД и температуры газа Тоз на входе в первую турбину ГТД (на выходе газа из КС), что наглядно подтверждается зависимостью КПД ГТУ от Лк при различных отношениях Тоз/То: здесь Тоз-абсолютная температура газа на выходе из КС в полных параметрах; То-абсолютная температура воздуха на входе в ГТУ. Максимальное значение КПД при реально достижимой в настоящее время температуре Тоз=1000°С имеет место при Лк=16-21. Данную Лк можно осуществить в многоступенчатом осевом компрессоре; при этом в составе ГТД могут быть два последовательно установленных компрессора, каждый из которых приводится от отдельной турбины, или один компрессор, устойчивость режимов работы которого повышается вследствие применения поворотных лопаток спрямляющих аппаратов на ряде первых ступеней. При этом возможно применение дополнительных устройств, обеспечивающих устойчивость работы компрессоров, особенно на переходных режимах: лент перепуска воздуха, антипомпажных клапанов и т.д. Топливо Газ
Т ВВВоздух Рис.1.2. Принципиальная схема двухкомпрессорного ГТД со свободной турбиной винта. Принципиальная схема двухкомпрессорного ГТД приведена на рис.1.2. На ней показаны компрессора и турбины, их количество, взаимное расположение и силовая связь. Собственно газовыми турбинами являются ТВД, ТНД. ТВ; совокупность КНД, ТНД, и соединяющего их вала образует турбокомпрессорный блок низкого давления (ТКНД); совокупность КВД, ТВД и соединяющих их конструкций—турбокомпрессорный блок высокого давления (ТКВД): часть ГТД, включающую ТКНД, ТКВД и КС, часто называют генератором газа (ГГ). Таким образом, ГТД можно рассматривать как совокупность генератора газа и пропульсивнои турбины. 1.1.3. Передача Оптимальные условия работы гребного винта и пропульспвной турбины ГТД обеспечиваются обычно при различных частотах вращения. Для достижения приемлемых экономичности, масс и габаритов частота вращения ротора пропульсивной турбины должна быть значительно выше, чем гребного винта. Снижение частоты вращения осуществляется в передаче при обязательном требовании минимальных потерь мощности. Передача может выполнять и другие функции, в частности «собирать» мощности нескольких двигателей на один движитель, «раздавать» мощность теплового двигателя на несколько движителей, разобщать двигатели от движителей, осуществлять реверс и т. д. Различают передачи механические, гидравлические, электрические. Последняя может работать на переменном и постоянном токе. В первом случае потери энергии в передаче составляют 6— 14%, во втором—11—19%. Для электропередач характерны большие массы и габариты: так, приходящаяся на 1 кВт масса электропередачи составляет 7—22 кг. Несомненны преимущества электропередач: — возможность использования нереверсивного главного двигателя; — удобство управления установкой; — уменьшение длины гребных валов; — отсутствие жесткой связи между главным двигателем и винтом и т. д. Чисто гидравлическая передача имеет относительно малый КПД: 95—96 и 85—88 % — соответственно гидромуфты и гидротрансформатора переднего хода, 70—75 % —гидротрансформатора заднего хода. По этой причине их предпочитают применять в сочетании с механической передачей. Механическая (обычно зубчатая) передача имеет высокий КПД (до 98—99 % ) и находит преимущественное применение на судах . 1.1.4. Общая компоновка ГТУ. На судах применяют ГТУ двух основных типов: с ГТД промышленного (тяжелого) типа; с ГТД авиационного (легкого) типа. Компоновочные схемы этих ГТУ могут существенно отличаться. Для ГТУ второго типа характерно выполнение ГТД в рамном или безрамном варианте, с трубчатым основанием, в звукоизолирующем кожухе. Максимально возможная часть систем, обеспечивающих работу ГТД, смонтирована на нем или в его раме; основные вспомогательные механизмы (например, основные топливный и масляный насосы) навешены на ГТД и приводятся от блока его вращения, в наименьшей степени изменяющего частоту вращения при переходе ГТД с режима на режим. На редукторе ГТУ также смонтированы обеспечивающие его работу системы и механизмы (например, навесные маслонасосы). Связь ГТД с редуктором осуществляется посредством рессор. Системы ГТУ включают комплексы разнообразных технических средств, при помощи которых могут быть осуществлены все эксплуатационные режимы работы установки, а также ее техническое обслуживание. Условно их можно разделить на две группы. Первая группа—это комплексы технических средств, которые позволяют управлять установкой, т. е. задавать и поддерживать необходимые режимы се работы и изменять эти режимы при необходимости. К ним относятся системы: - управления, воздействующая на подачу топлива в КС, на системы пуска и реверса и другие системы, обеспечивающие поддержание и изменение режима работы; - пуска, с помощью которой ГТУ вводится в действие; - реверса, обеспечивающая изменение направления упора, создаваемого гребным винтом или другим движителем. Ко второй группе относятся следующие системы, обеспечивающие оптимальные условия для работы ГТУ: - топливная, состоящая из технических средств, размещенных на ГТД, а также вне двигателя; -масляная с техническими средствами на ГТД, передаче (редукторе) и вне их; -охлаждения забортной водой, размещенная обычно вне ГТУ и предназначенная для охлаждения масла ГТУ в маслоохладителях; - сжатого воздуха, технические средства которой размещены как на ГТУ, так и вне установки; - промывки проточной части; - антиобледенительная (система обогрева входного устройства ГТД) и ряд других. Кроме того, работа ГТД на судне обеспечивается воздухоприемным и газовыпускным устройствами, системой теплоизоляции ГТД. Основные характеристики судов с ГТУ приведены в табл. 1.1, а показатели ГТУ - в табл. 1.2 (по отечественным и иностранным литературным источникам). Таблица 1. 1. Основные характеристики судов с ГТУ.
Таблица 1.2 Основные характеристики ГТУ
1.1.4.1. Судовые ГТУ промышленного типа. Примером названных установок может служить ГТУ-20 судна «Парижская коммуна». Она состоит из двух одинаковых установок ГТУ-10, работающих через общий редуктор на один ВРШ. Особенностью ГТУ-20 является блокированная ТНД, что потребовало установки ВРШ. Установки промышленного типа МS-1000, МS-3000, МS-5000, МS-7000 и их модификации фирмы «Дженерал электрик» конвертированы в судовые из стационарных ГТУ. Все они работают но открытому циклу с регенерацией теплоты уходящих газов для подогрева воздуха. Особенностью ГТУ М5-3012К является привод генератора переменного тока от ТНД и постоянная частота их вращения. Главный электродвигатель (ГЭД) переменного тока с постоянной частотой вращения приводит в действие ВРШ. Установка М5-3012К со всеми обслуживающими механизмами и системами расположена на верхней палубе судна, а ГЭД — в машинном отделении. Некоторые данные о судовых ГТД промышленного типа приведены в табл. 1.3. Таблица1.3. Характеристики судовых ГТД типа МS.
1.1.4.2. Судовые ГТУ легкого типа. На судах такие ГТУ нашли применение в следующем исполнении: - с одним компрессором и одной турбиной (блокированная, рис. 1.6, а); -с одним турбокомпрессором и свободной ТВ (рис. 1.6, б); — с двумя турбокомпрессорами и свободной ТВ (см. рис. 1.2). Были проведены большие работы по конвертированию авиационных ГТД для использования их на судах: в СССР — ГТУ М-25. В США были созданы ГТД типов: LМ-100, LМ-300, LМ-1500, LМ-2500, LМ-5000, FТ-4А, FТ-4А12, FТ-4С-2 и др.; в Англия - типов «Олимп», «Тайн», «Гном» и др. Некоторые данные о судовых ГТД авиационного типа приведены в табл. 1.4. Табл.1.4. Характеристики зарубежных судовых ГТД.
1.2. Редукторы Редукторы обладают рядом преимуществ перед другими типами передач: меньшие масса и габариты, более высокий КПД, простота устройства, сравнительно меньшая стоимость, большая долговечность, высокая безотказность и т. д. По назначению различают редукторы главные и вспомогательные; по конструкции — переборные, планетарные и комбинированные, по направлению вращения—реверсивные и нереверсивные; по виду зубчатых колес—цилиндрические и конические; по числу зубчатых пар— одно- и многоступенчатые; по расположению осей валов—горизонтальные и вертикальные; по типу передач — цепные, гнездовые и с раздвоением мощности. Примером двухступенчатого редуктора с раздвоением мощности является редуктор главного газотурбинного агрегата М-25 судов типа «Атлантика». В 1-й ступени мощность ГТД через шестерню Z1 передается на две шестерни Z2. На 2-й ступени от каждой шестерни Z3, приводимой от Z2, мощность передается на две шестерни Z4, от них—на главное колесо редуктора Z5 и далее—на ВФШ. Редуктор установки М-25—переборный, реверсивный, с цилиндрическими зубчатыми колесами, с горизонтальным расположением валов; редуктор установки ГТУ-20—также переборный, с цилиндрическими зубчатыми колесами, двухступенчатый, с горизонтальным расположением валов, но нереверсивный, с цепным типом передачи. Редуктор судовой ГТУ средней мощности с ГТД GТРЕ-990 выполнен планетарным. Планетарные редукторы в основном устанавливаются на КВП и СПК. Для комбинированных установок наиболее характерны редукторы, собирающие мощности от нескольких двигателей, в том числе и разнотипных и разной мощности, а также раздающие мощность двигателей различным нескольким потребителям. Для этих же установок характерны операции подключения и отключения двигателей с помощью гидравлических и специальных механических разобщительных муфт. Наиболее простой, но достаточно распространенной муфтой такого назначения является автоматическая механическая с обгонным устройством .В редукторах широко используются так называемые самосинхронизирующие муфты, конструкция которых представляет собой сочетание фрикционной и зубчатой муфт. Первая служит для синхронизации валов и создания тем самым условий для включения зубчатой муфты, которая способна продолжительное время передавать основной крутящий момент. 1.3. Средства реверса Упор винта на переднем ходу называют положительным, на заднем—отрицательным. Отрицательный упор применяют в эксплуатации для движения судна задним ходом, торможения и остановки судна, идущего передним ходом, для стаскивания судна с мели и т. п. Реверсом называют маневр, связанный с изменением направления упора, создаваемого гребным винтом. Осуществляют реверс с помощью одного из трех элементов пропульспвного комплекса: -силовая турбина—передача—движитель, который в этом случае называют реверсивным. 1.3.1. Газовый реверс. При использовании реверсивной силовой турбины реверс называют газовым, а ГТД—реверсивным. В соответствии с требованиями к проектированию судовых установок мощность на заднем ходу должна составлять примерно 40—50 % мощности переднего хода. Конструктивно турбина заднего хода может быть выполнена в виде : а) отдельной турбинной ступени, расположенной на диске, жестко связанном с ротором турбины переднего хода; б) отдельной турбины, передающей крутящий момент на редуктор через собственный вал (рессору); в) верхнего (нижнего) яруса лопаток, расположенного над (под) ярусом лопаток одной из ступеней переднего хода. В конструкциях (а) и (б) существенно возрастают массогабаритные показатели ГТД, возникает необходимость в создании надежных закрытий в газовых каналах, а в случае «б», кроме того, нарушается принцип прямоточности ГТД. В случае применения радиальной реверсивной турбины возникают трудности компоновки проточных частей турбин, состоящих из нескольких последовательно расположенных центростремительных турбин, а также затруднения, связанные с конструктивным сочетанием в одной проточной части осевых и радиальных ступеней . Газовый реверс с использованием двухъярусного облопачивания реверсивной турбины может быть выполнен по схеме, разра- ботанной и испытанной фирмой «Дженерал электрик» для судовых ГТУ промышленного типа третьего поколения (рис. 1.4). На рисунке показаны направления движения газов и положения органов реверсивных устройств ГТУ. Специальные дефлекторы, расположенные за реверсивной ступенью, образуют на переднем ходу канал для прохода отработавших газов из рабочей решетки верхнего яруса в выпускной диффузор, обеспечивая тем самым уменьшение протечек газа в ступень заднего хода и снижение вентиляционных потерь. При работе на заднем ходу дефлекторы перемещаются в положение, при котором образуется канал для прохода отработавших газов из рабочей решетки заднего хода в выпускной диффузор. Существенный недостаток ГТУ с газовым реверсом - потери мощности, достигающие 4—5%, что вызвано увеличенным сопротивлением вращению неработающих ступеней рабочего тела, имеющего весьма высокую плотность (например, по сравнению с ПТУ, в которой неработающие ступени располагают в зоне вакуума). Рис. 1.4. Схема течения газов в реверсивной турбине с двухъярусным облопачиванием: а—при работе на переднем ходу; б—при работе на заднем ходу. /—механизм поворота сопловых лопаток; 2—сопловые лопатки ПХ; 3—сопловые лопатки ЗХ; 4 — газовыпускной диффузор; 5—дефлекторы; 6 — рабочие лопатки ЗХ; 7—рабочие лопатки ПХ; 8—газовый канал ЗХ; 9—газовый канал ПХ; 10—разделитель газового потока; 11— рабочие лопатки предыдущей турбины. 1.3.2. Реверсивные передачи Конструкция реверсивной передачи позволяет изменить направление вращения выходного (соединенного с винтом) вала передачи при неизменном направлении вращения входного (соединенного с ГТД) вала. Реверсивные передачи могут быть электрическими, гидравлическими и механическими. Электрический реверс применяют на судах с электродвижением. Его недостатки и достоинства определяются недостатками и достоинствами электрических машин, применяемых на судах для обеспечения хода судна. Гидрореверсивная передача, изображенная на рис. 1.5, включает в свой состав гидромуфту и гидротрансформатор. В данной схеме продолжительный передний ход осуществляется передачей крутящего момента от вала 7 на шестерню 4 непосредственно через фрикционную или кулачковую муфту (на рис. 1.5 не показана ), а внутренняя полость гидромуфты может быть либо заполненной рабочей жидкостью, либо опорожненной. Для перехода на задний ход нужно заполнить рабочей жидкостью гидромуфту,
|